

Prognostic Impact of DDR Mutations (mt) in IDH mutant High-Grade Gliomas (HGG).

¹John L. Villano, ²Joanne Xiu, ²Stephanie Rock, ²Ninad Kulkarni, ²Negar Sadeghipour, ¹Jill M. Kolesar, ¹Janna Neltner, ¹Trevor Morris, ³Catherine R Garcia, Clyde Coleman, ¹David Spetzler, ⁴Emil Lou, ⁵Sonikpreet Aulakh, ⁶Michael J. Glantz, ⁷Eric T. Wong; ¹University of Kentucky Markey Cancer Center, Lexington, KY; ²Caris Life Sciences, Phoenix, AZ; ³The University of Texas MD Anderson Cancer Center, Houston, TX; ⁴University of Minnesota, Minneapolis, MN; ⁵West Virginia University, Morgantown, WV; ⁶Peni State Milton S. Hershey Medical Center, Hershey, PA; ⁷Rhode Island Hospital, Providence, RI

Abstract

Background:

- The oncometabolite 2-hydroxyglutarate (2HG) produced by *IDH1/2* mt in HGG has profound effects on numerous pathways including DNA damage repair (DDR).
- We investigated the prognostic effect of DDR mt in *IDH* mutant vs. wild type (wt) tumors in a large cohort using a real-world database.

Methods:

- A total of 4894 HGG tumors tested at Caris Life Sciences (Phoenix, AZ) with NextGen sequencing of DNA (592-gene panel or whole exome sequencing) were included in the study.
- DDR alteration was defined as a pathogenic mutation in one of > 20 DDR genes (ATM, BARD1, BRCA1, BRCA2, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, MLH1, MSH2, MSH3, MSH6, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D
- Patient survival was obtained by insurance claims data and calculated from the initiation of tissue collection (rwOS).
- Cox proportional hazards model was used to calculate hazard ratios (HR) and log-rank tests to calculate p values, which were adjusted for multiple comparisons. Significance was set at p<u><</u>0.05.

Results

Patient Characteristics

Results

	Mutate
MSH6	27
ATM	20
MLH1	16
MSH2	14
MSH3	7
BRCA2	11
FANCA	9
BRCA1	7
BARD1	6
RAD50	5
PALB2	5
FANCC	4
FANCM	2
RAD51D	2
FANCL	2
FANCD2	2
FANCG	2
FANCI	1
RAD51C	1
FANCE	1
RAD51B	1
FANCB	0
FANCF	0
RAD51	0

Figure 1. DDR mutations observed in the IDH MT cohort. A. Mutation frequencies B. Oncoprint of DDR mutation patterns in IDH MT tumors

Figure 2. Drastic difference of prognostic effect of DDR mutations in IDH MT, high grade gliomas (A, B) and in ID WT (C, D) high grade gliomas. A, C: all tumors; B, D: restricted to tumors collected before temozolomide start; A, B: survivals calculated from tissue collection to

Results

No significant differences seen in MGMT methylation or LOH Figure 4. Tumor mutational burden (TMB) in DDR mutant vs. wild type tumors. A. Violin plot and statistics of TMB in HGG astrocytomas with or without DDR mutations

TMB Binned	DDR	No DI
< 3	9	147
3-4	11	194
4-5	4	171
≥ 5	44	346

Results

Conclusions

- wt
- similar.
- DDR mutation in many other solid tumors.
- survival.
- consider therapeutic approaches accordingly.

ALLIANCE							
∽ Group	ings						
			Group 1			Group 2	
GROU	GROUP 1 VS. GROUP 2 (N = 1121)		HGG Astro IDH MT DDR (N = 100)		HGG Astro IDH MT No DDR (N = 102		
TREA	TREATMENT (N = 1121)		Temozolomide (N = 779)		NOT Temozolomide (N = 342)		
AGE ((N = 1121)		>=65 (N = 40)		<65 (N = 1081)		
MGM	MGMT methylated (N = 1121)			nethylated (N = 832)	NOT MGMT methylated (N	= 289)	
GENDER (N = 1121)		Female (N = 471)		Male (N = 650)			
	✓ Summary						
		HR		CI - Lower 95%	CI - Upper 95%	р	
	GROUP 1 VS. GROUP 2	1.8811378189		1.417656226	2.4961478167	1.1969E-5	
	TREATMENT	0.916131523		0.7515179346	1.1168023128	0.3860485916	
	AGE	0.9053154012		0.5396386769	1.5187865711	0.7063061861	
	MGMT methylated	0.8658874635		0.7042154344	1.0646757553	0.1720553526	
	GENDER	0.8322580782		0.6904626158	1.0031730796	0.0540144935	

In a large real-world database, we demonstrate IDH mt HGG with a DDR mutation exhibit significantly poorer survival compared to DDR

This is not seen in IDH wt, where survivals of the two groups are

These results stand in sharp contrast to reported prognostic effect of

The data suggest that DDR mutations in the context of 2HG

accumulation in IDH mt HGG may be an indicator of profound

genomic instability that confers severe negative impact on patient

Clinicians managing high-grade gliomas should consider the presence of DDR mutations in IDH mutant patients as a poor prognostic category in this overall favorable prognostic group and

Prognostic Impact of DDR Mutations (mt) in IDH mutant High-Grade Gliomas (HGG).

Results

3 — 4

NoDDR

147

171

346

¹John L. Villano, ²Joanne Xiu, ²Stephanie Rock, ²Ninad Kulkarni, ²Negar Sadeghipour, ¹Jill M. Kolesar, ¹Trevor Morris, ³Catherine R Garcia, Clyde Coleman, ¹David Spetzler, ⁴Emil Lou, ⁵Sonikpreet Aulakh, ⁶Michael J. Glantz, ⁷Eric T. Wong; ¹University of Kentucky Markey Cancer Center, Lexington, KY; ²Caris Life Sciences, Phoenix, AZ; ³The University of Texas MD Anderson Cancer Center, Houston, TX; ⁴University of Minnesota, Minneapolis, MN; ⁵West Virginia University, Morgantown, WV; ⁶Peni State Milton S. Hershey Medical Center, Hershey, PA; ⁷Rhode Island Hospital, Providence, RI

Abstract

Background:

- The oncometabolite 2-hydroxyglutarate (2HG) produced by *IDH1/2* mt in HGG has profound effects on numerous pathways including DNA damage repair (DDR).
- We investigated the prognostic effect of DDR mt in *IDH* mutant vs. wild type (wt) tumors in a large cohort using a real-world database.

Methods:

- A total of 7394 HGG tumors tested at Caris Life Sciences (Phoenix, AZ) with NextGen sequencing of DNA (592-gene panel or whole exome sequencing) were included in the study.
- DDR alteration was defined as a pathogenic mutation in one of > 20 DDR genes (ATM, BARD1, BRCA1, BRCA2, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, MLH1, MSH2, MSH3, MSH6, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D
- Patient survival was obtained by insurance claims data and calculated from the initiation of tissue collection (rwOS).
- Cox proportional hazards model was used to calculate hazard ratios (HR) and log-rank tests to calculate p values, which were adjusted for multiple comparisons. Significance was set at p<u><</u>0.05.

Results

Patient Characteristics

		HGG Astro IDH MT DDR	HGG Astro IDH MT No DDR	HGG Astro IDH WT DDR	HGG Astro IDH WT No DDR	Total
Age	Median	40	38	60	62	
	Inter-Quartile Range	30-49	32-47	50-69	53-70	
Gender	Female	46	426	173	2396	3041
	Male	57	596	231	3469	4353
Race	Asian/Pacific Islander	1	24	9	123	157
	Black /African American	4	49	21	298	372
	Other	1	45	17	225	288
	White	61	530	230	3509	4330
	Unknown	36	374	127	1710	2247
Ethnicity	Hispanic or Latino	5	64	24	303	396
	Not Hispanic or Latino	73	646	269	4173	5161
	Unknown	25	312	111	1389	1837
	Total	103	1022	404	5865	7394

Results

Figure 1. DDR mutations observed in the IDH MT cohort. A. Mutation frequencies

	Mutate
MSH6	27
ATM	20
MLH1	16
MSH2	14
MSH3	7
BRCA2	11
FANCA	9
BRCA1	7
BARD1	6
RAD50	5
PALB2	5
FANCC	4
FANCM	2
RAD51D	2
FANCL	2
FANCD2	2
FANCG	2
FANCI	1
RAD51C	1
FANCE	1
RAD51B	1
FANCB	0
FANCF	0
RAD51	0

Cohort 1 396 Cohort 2 5851

Figure 3. Drastic difference of prognostic effect of DDR mutations in IDH MT, high

grade gliomas (A, B) and in ID WT (C, D) high grade gliomas. A, C: all tumors; B, D: restricted to tumors collected before temozolomide start

A. Genes significantly more frequently mutated in DDR mutant tumors (q<0.05)

Value/Prevalence in HGG Astro IDH MT DDR Value/Prevalence in HGG Astro IDH MT No DDI NSHO NITT NS LANCE BECK WILL BADS' LP30' LANC' SPET ASKI SETT LATE AND WILL LANC WILL LANC ADDID BAN' WILL BE BAR LANCE ADDID, NEW SPAR AND LOHAR No significant differences seen in MGMT methylation or LOH

Figure 4. Tumor mutational burden (TMB) in DDR mutant vs. wild type tumors. A. Violin plot and statistics of TMB in HGG astrocytomas with or without DDR

B. Prevalence of DDR mutations in different TMB buckets C. Prognosis of TMB buckets in HGG not

Results

and MGMT promoter methylation.

 ΛRI

Conclusions

- wt
- similar.
- DDR mutation in many other solid tumors.
- survival.
- consider therapeutic approaches accordingly.

Contact: Dr. John L. Villano jlvillano@uky.edu University of Kentucky

PRECISION ONCOLOGY ALLIANCE

Figure 5. Multivariate Analysis confirms that DDR mutation is associated with unfavorable prognosis after corrected for gender, age, temozolomide treatment

	Group 1	Group 2	HR (95% Cl)	P value
Group 1 vs. Group 2 (N=1121)	HGG Astro IDH MT DDR Mt (N=100)	HGG Astro IDH MT DDR WT (N=1021)	1.88 (1.42-2.5)	1.12 E-05
Treatment (N=1121)	Temozolomide (N=779)	NO Temozolomide (N=342)	0.92 (0.75- 1.12)	0.39
Age (N=1121)	>=65 (N=40)	<65 (N=1081)	0.91(0.54 -1.52)	0.71
MGMT Methylated (N=1121)	MGMT methylated (N=832)	NOT MGMT methylated (N=289)	0.87 (0.70- 1.06)	0.17
Gender (N=1121)	Femaile (N=471)	Male (N=650)	0.83 (0.69- 1.00)	0.054

In a large real-world database, we demonstrate IDH mt HGG with a DDR mutation exhibit significantly poorer survival compared to DDR

This is not seen in IDH wt, where survivals of the two groups are

These results stand in sharp contrast to reported prognostic effect of

The data suggest that DDR mutations in the context of 2HG

accumulation in IDH mt HGG may be an indicator of profound

genomic instability that confers severe negative impact on patient

Clinicians managing high-grade gliomas should consider the presence of DDR mutations in IDH mutant patients as a poor prognostic category in this overall favorable prognostic group and