

GEORGETOWN UNIVERSITY School of Medicine

Introduction

- NUT carcinoma (NC) is a rare and aggressive malignancy characterized by rearrangement of the *NUTM1* gene on chromosome 15q14.
- NC presents as undifferentiated or poorly differentiated squamous cell carcinoma that frequently arises in the head & neck or lungs.
- In approximately two-thirds of cases, *NUTM1* is fused to bromodomain-containing protein (BRD) 4 on chromosome 19p13.1.
- Several other partners have been identified, including *BRD3* and nuclear receptor binding SET domain protein (*NSD*3).
- Unlike many cancers, the *NUTM1* rearrangement appears to be the sole driver of tumorigenesis.
- Current trials are evaluating agents that target the NUTM1::BRD4 fusion protein; however still no effective treatment has been described.
- Overall survival is reportedly low in a few studies – 4.1 months as reported by Xie et al.
- The rarity of this disease has made characterizing shared pathological and clinical features more difficult.
- This project aims to comprehensively characterize the molecular landscape of NC in order to identify potential avenues for future treatments.

Materials and Methods

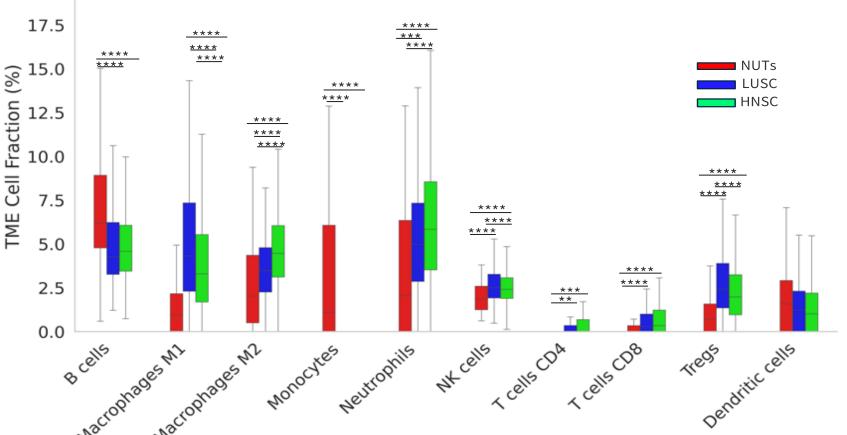
- DNA (592-gene or whole exome) and RNA (whole transcriptome) sequencing was performed at Caris Life Sciences (Phoenix, AZ).
- Tumor Mutational Burden (TMB)-High was defined as $\geq 10 \text{ Mut/Mb}$.
- Tumoral immune cell fractions were inferred using quanTlseq.
- Pathway enrichment was obtained using Gene Set Enrichment Analysis (GSEA).
- Real-world overall survival (rwOS) was extrapolated from insurance claims data with KM estimates from the time of tissue collection to last date of contact.

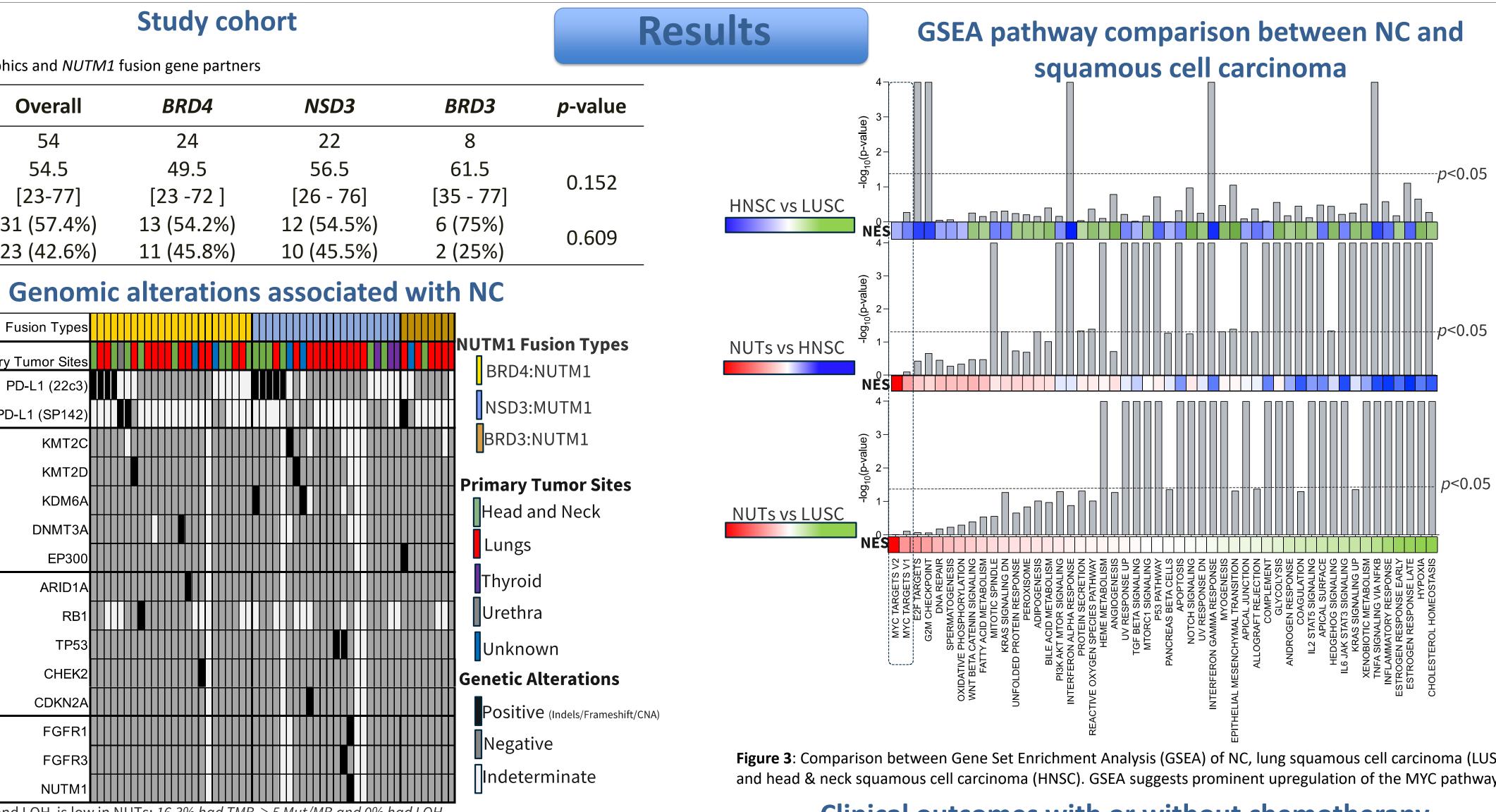
Multi-omic Characterization and Molecular Profiling of NUT Carcinoma

¹Gianna Kroening, ²Mark G. Evans, ³Chul Kim, ²Tolulope Adeyelu, ²Andrew Elliott, ²Matthew J. Oberley, ⁴Jia Luo, ¹Misako Nagasaka ¹University of California Irvine School of Medicine, Irvine, CA, ²Caris Life Sciences, Phoenix, AZ, ³Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, ⁴Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA

Table 1: Patient demographics and NUTM1 fusion gene partners

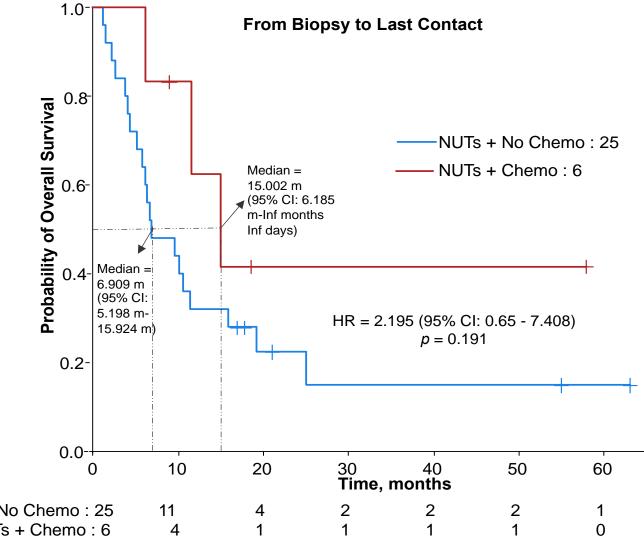
Characteristic	Overall
Total, N	54
Median Age	54.5
[Range, years]	[23-77]
Male, N (%)	31 (57.4%
Female, N (%)	23 (42.6%


NUTM1 Fusion Types		
Primary Tumor Sites		
IO Markers	PD-L1 (22c3)	
	PD-L1 (SP142)	
Histone Modification	KMT2C	
	KMT2D	
	KDM6A	
	DNMT3A	
	EP300	
Cell Cycle/ DDR Pathway	ARID1A	
	RB1	
	TP53	
	CHEK2	
	CDKN2A	
Copy Number Amplification	FGFR1	
	FGFR3	
	NUTM1	
Prevalence of TMB and LOH is low		


Prevalence of TMB and LOH is low in NUTs: 16.3% had TMB \geq 5 Mut/MB and 0% had LOH.

20.0

Figure 1: Genomic landscape of NC cases. The most common *NUTM1* fusion partner is *BRD4*, and lung is the most common primary tumor site.



Intratumoral microenvironment composition

Figure 2: Comparison between the intratumoral microenvironment of NC (NUTs) and squamous cell carcinoma of the head & neck (HNSC) and lung (LUSC). NCs have significantly lower immune cell infiltration compared to squamous cell carcinoma of the lung and head & neck, although B cells/monocytes are significantly higher in NC.

Figure 3: Comparison between Gene Set Enrichment Analysis (GSEA) of NC, lung squamous cell carcinoma (LUSC), and head & neck squamous cell carcinoma (HNSC). GSEA suggests prominent upregulation of the MYC pathway in NC.

NUTs + No Chemo : 25 NUTs + Chemo:

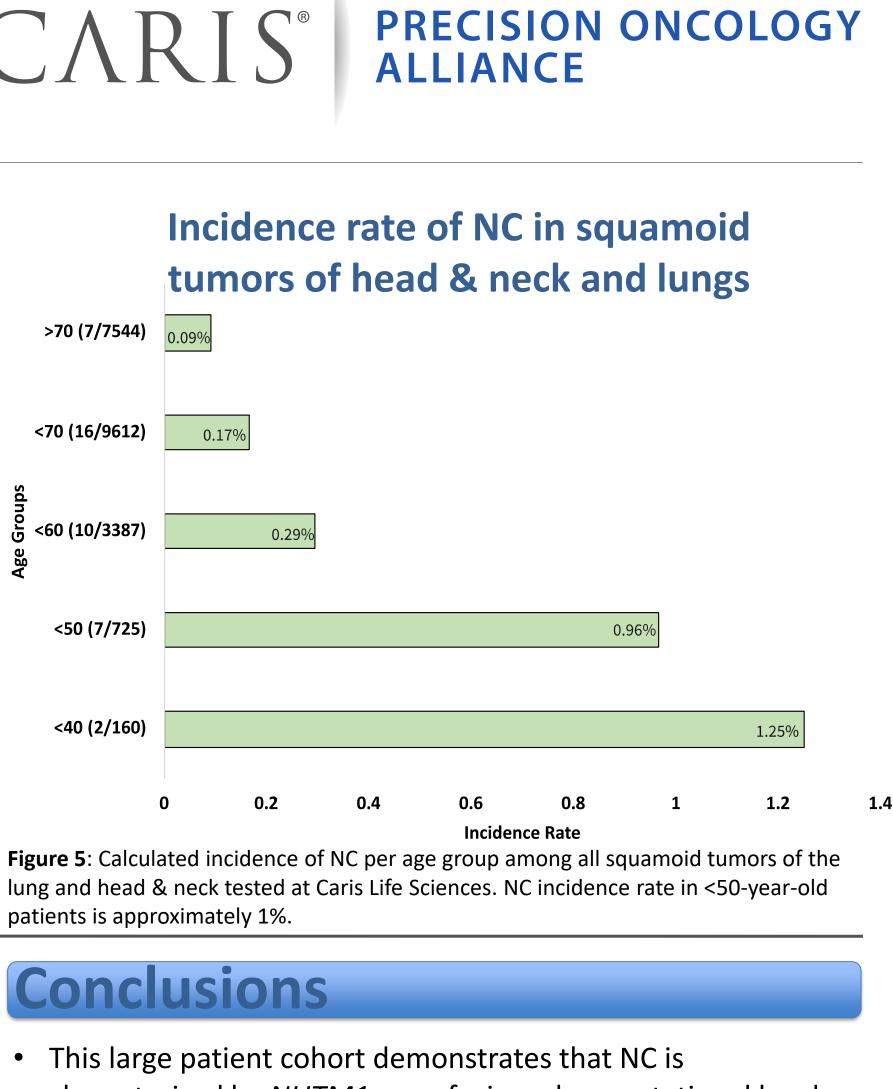

Clinical outcomes with or without chemotherapy

Figure 4: Overall survival from time of biopsy to last contact compared between NC patients (NUTs) treated with and without chemotherapy. NC patients treated with chemotherapy have a tendency for longer overall survival compared to those not treated, although

this observation is not

statistically significant.

patients is approximately 1%.

- characterized by NUTM1 gene fusions, low mutational burden, and general lack of additional oncogenic drivers.
- The prognosis of NCs remains dismal, and future work could focus on subpopulations of immune cell-rich tumors that might be responsive to immunotherapy.

References

- 2010;203(1):16-20.
- Salati M, et al. NUT midline carcinoma: Current concepts and future perspectives of a novel tumour entity. Critical Reviews in Oncology/Hematology. 2019;144:102826. Bauer DE, et al. Clinicopathologic features and long-term outcomes of NUT midline carcinoma. Clinical Cancer Research. 2012;18(20):5773-5779.
- 4. Xie XH, et al. Clinical features, treatment, and survival outcome of primary pulmonary NUT midline carcinoma. Orphanet Journal of Rare Diseases. 2020;15(1):183.

Contact

1. French CA. NUT midline carcinoma. Cancer Genetics and Cytogenetics.

Misako Nagasaka, MD, PhD (nagasakm@hs.uci.edu) Jia Luo, MD (jia_luo@dfci.harvard.edu) Chul Kim, MD, MPH (chul.kim@gunet.georgetown.edu)