

Comprehensive molecular and immunological characterization of early-onset esophagogastric cancer

Speaker: Lawrence W. Wu, MD

Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, New York

COLUMBIA

COLUMBIA UNIVERSITY Herbert Irving Comprehensive Cancer Center

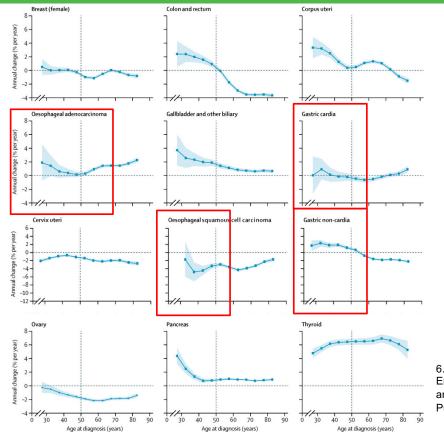
-NewYork-Presbyterian

Disclosure Information

Lawrence Wu

I have no financial relationships to disclose.

Introduction



- Esophagogastric cancer (EGC) is a highly prevalent cancer globally with annual incidence of over 1.5 million^{1,2}
- In the United States, the incident of early-onset esophagogastric cancer (EOEGC), defined as age of diagnosis <50, has increased over 30% in recent decades³⁻⁵

- 1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424
- 2. Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019;144(8):1941-53
- 3. Islami F, DeSantis CE, Jemal A. Incidence Trends of Esophageal and Gastric Cancer Subtypes by Race, Ethnicity, and Age in the United States, 1997-2014. Clin Gastroenterol Hepatol 2019;17(3):429-39
- 4. Bergquist JR, Leiting JL, Habermann EB, et al. Early-onset gastric cancer is a distinct disease with worrisome trends and oncogenic features. Surgery 2019;166(4):547-55
- 5. Codipilly DC, Sawas T, Dhaliwal L, et al. Epidemiology and Outcomes of Young-Onset Esophageal Adenocarcinoma: An Analysis from a Population-Based Database. Cancer Epidemiol Biomarkers Prev 2021;30(1):142-9

Introduction

- Rising incidence of esophagogastric cancers in the United States from 1995 to 2014⁶
 - Increasing along with several other gastrointestinal malignancies

6. Sung H, Siegel RL, Rosenberg PS, Jemal A. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health. 2019;4(3):e137-e147

Introduction

- Risk factors for EGC⁷⁻⁸
 - Smoking
 - Alcohol
 - Obesity
 - Helicobacter pylori infection
- Single center study at Memorial Sloan Kettering found that EOEGC patients were more likely to be genomically stable, have diffuse histology, and are less likely to be microsatellite-instability-high⁹
- Prior studies limited by single center or small multi-institutional cohort analyses

^{7.} Domper Arnal MJ, Ferrandez Arenas A, Lanas Arbeloa A. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol 2015;21(26):7933-43

^{8.} Karimi P, Islami F, Anandasabapathy S, et al. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev 2014;23(5):700-13

^{9.} Lumish MA, Walch H, Maron SB, et al. Clinical and Molecular Characteristics of Early-Onset versus Average-Onset Esophagogastric Cancer. J Natl Cancer Inst 2023

- 1. Provide a detailed analysis of the molecular characteristics of early versus average-onset esophagogastric cancer in a large real-world database
- 2. Define immune microenvironment characteristics of early versus average-onset esophagogastric cancer
- 3. Evaluate response to immune checkpoint inhibitors in patients with early versus average-onset esophagogastric cancer

- Patient Samples: 5,175 esophagogastric cancer patients in Caris Life Sciences database
- Comprehensive molecular analysis
 - Next generation sequencing (NGS)
 - Tumor mutation burden (TMB)
 - Deficient mismatch repair (dMMR)/microsatellite-instability (MSI)
 - HER-2 and PD-L1 IHC
 - Whole transcriptomic sequencing (WTS)
 - Gene fusions
 - MAPK Pathway activation score
 - Immune checkpoint gene expression
 - Gene set enrichment analysis
 - Immune cell infiltrate fractions

Methods

- Real-world overall survival (OS) data: Obtained from insurance claims data and calculated from date of tissue collection/treatment start until date of last contact
- Statistical analysis: Chi-square and Mann-Whitney U test with pvalues adjusted for multiple comparisons (q<0.05)

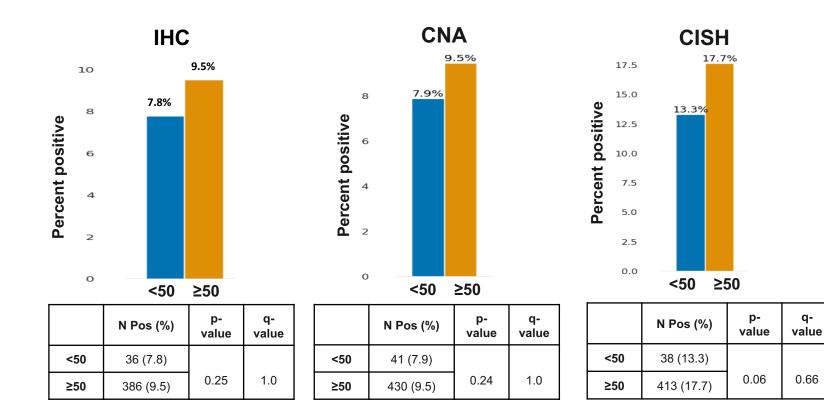
Results – EGC is predominantly male and adenocarcinoma histology

	Age<50	Age≥50		
Number of patients	530	4645		
Male	350 (66.0%)	3445 (74.1%)		
Female	180 (34.0%)	1200 (25.8%)		
Adenocarcinoma histology	405 (76.4%)	3502 (75.4%)		
Other histology	125 (23.6%)	1143 (24.6%)		

Results – Mutational analysis with increased frequency of *CDH1* **mutations in EOEGC.**

	<50	≥50						
TP53							1 .	
CDH1			Features		% ≥50	%	p-value	
			TP53	65.90	74.44	-8.54	2.78E-05	
CDKN2A			CDH1	18.88	6.49	12.39		2.19E-20
SMAD4			CDKN2A	8.84	13.54	-4.70	0.003	0.10
KMT2D			SMAD4	5.00	8.18	-3.18	0.011	0.26
			KMT2D	4.61	8.50	-3.89	0.003	0.09
APC			APC	3.47	7.66	-4.19	0.000	0.02
RNF43			RNF43	1.93	4.48	-2.55	0.006	0.17
ΑΤΜ			ATM	1.72	3.48	-1.76	0.034	0.52
ARID2			ARID2	0.58	3.67	-3.09	0.000	0.01
			KMT2A	0.39	2.40	-2.02	0.003	0.10
KMT2A								

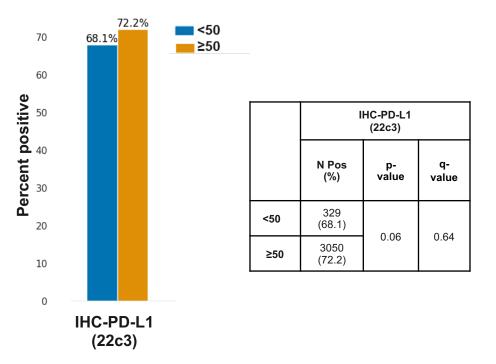
Results – Copy number alteration and fusion analysis with increased frequency of *CCNE1*, *MYC*, *FGFR2* amplifications and increased *ARHGAP26* fusion frequency in EOEGC.


	<50	≥50							
CNA-CCNE1				Features	% <50	% ≥50	%	p-value	q-value
CNA-MYC				CNA-CCNE1	6.81	4.38	2.43	0.01	0.27
Fusion-ARHGAP26				CNA-MYC	6.13	4.14	1.99	0.03	0.52
CNA-FGF3				Fusion-ARHGAP26	5.67	2.20	3.47	1.59E-06	0.0002
CNA-FGFR2			-6	CNA-FGF3	4.01	9.37	-5.36	6.35E-05	0.003
CNA-FGF4	ų —			CNA-FGFR2	3.45	1.87	1.58	0.02	0.29
				CNA-FGF4	3.32	8.62	-5.30	3.06E-05	0.002
CNA-FGF19				CNA-FGF19	2.91	9.15	-6.24	1.54E-06	0.0002
CNA-EGFR				CNA-EGFR	2.87	4.79	-1.92	0.04	0.59
CNA-CCND1	ľ.			CNA-CCND1	2.70	8.92	-6.22	1.16E-06	0.0002
CNA-PRDM1				CNA-PRDM1	1.72	0.79	0.93	0.04	0.56
CNA-BRCA1				CNA-BRCA1	0.38	0.02	0.36	0.03	0.47
Fusion-ROS1				Fusion-ROS1	0.38	0.04	0.33	0.05	0.63

Results – Trend towards decreased HER2 expression in EOEGC.

q-

0.66


Results – Decreased TMB-high and dMMR/MSI-H in EOEGC.

Percent positive

<50 **** >=50 10.1% 10 8 **** 6 5.7% TMB high dMMR/MSI-H 3.8% 4 q-N Pos (%) N Pos (%) p-value q-value p-value value 2 7 (1.3) <50 20 (3.8) 1.3% 0.00000 0.000 0.00002 0.001 3 3 ≥50 464 (10.1) 262 (5.7) 0 dMMR/ TMB high (≥ 10 Mut/Mb) MSI-H

Results – Trend towards decreased PD-L1 positivity in EOEGC.

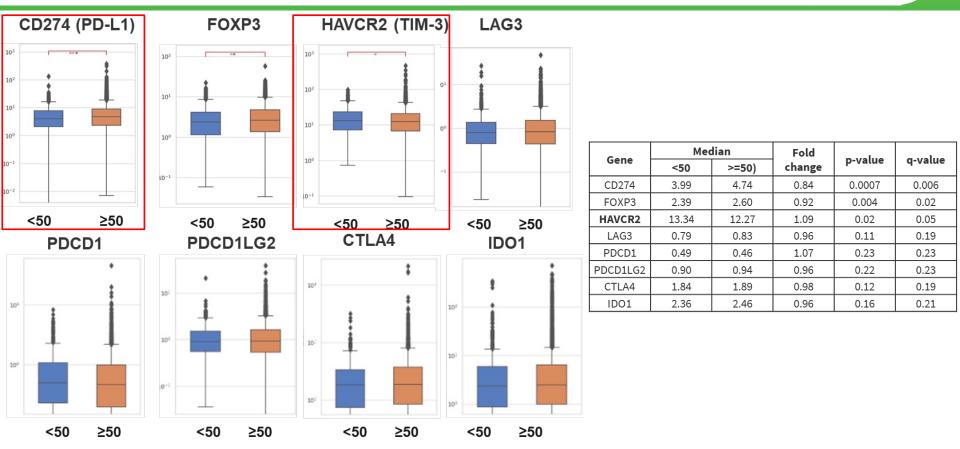
AMER American Association for Cancer Research

2024 • SAN DIEGO APRIL 5-10 • AACR.ORG/AACR24 • #AACR24

JAL

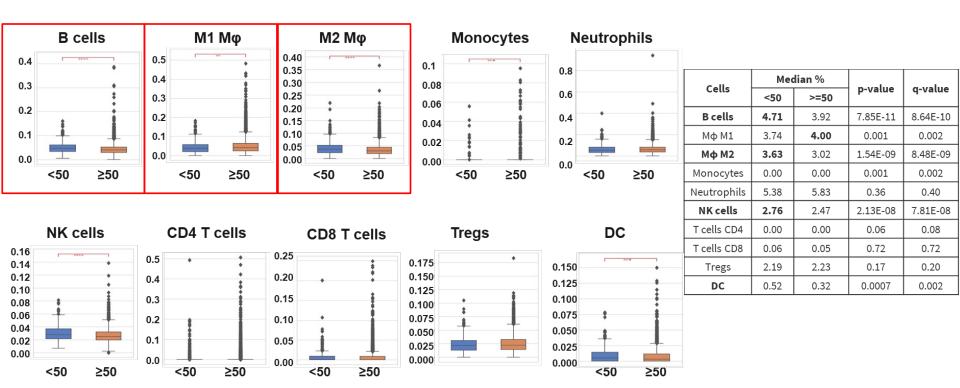
MEETING

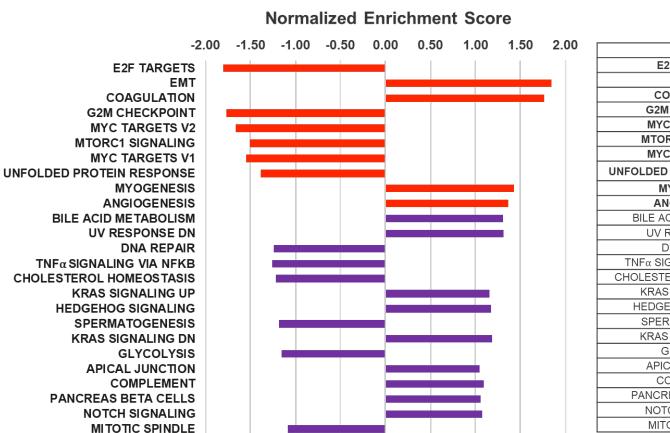
Results – Decreased MAPK pathway activity score in EOEGC.



7.5 5.0 2.5 MPAS 0.0 -2.5 -5.0 -7.5 <50 ≥50

	Median	p-value	q-value
<50	-0.16	0.003	0.003
≥50	0.13	0.003	0.003


Results – Immune gene expression analysis with increased *HAVCR2* (*TIM-3*) expression in EOEGC. Decreased *PD-L1* expression in EOEGC. No difference in *LAG-3*, *CTLA-4*, *IDO-1* expression.


Results – Increased B cell and M2 macrophages in EOEGC. Decreased M1 macrophages in EOEGC.

Results – Gene set enrichment analysis with increased enrichment of epithelial-mesenchymal transition and angiogenesis genes in EOEGC

Term	NES	FDR
E2F TARGETS	-1.80	0.00
EMT	1.85	0.00
COAGULATION	1.76	0.01
G2M CHECKPOINT	-1.77	0.01
MYC TARGETS V2	-1.66	0.02
MTORC1 SIGNALING	-1.51	0.05
MYC TARGETS V1	-1.55	0.05
UNFOLDED PROTEIN RESPONSE	-1.38	0.16
MYOGENESIS	1.43	0.17
ANGIOGENESIS	1.37	0.24
BILE ACID METABOLISM	1.30	0.31
UV RESPONSE DN	1.31	0.34
DNA REPAIR	-1.24	0.51
$TNF\alpha$ SIGNALING VIA NFKB	-1.26	0.54
CHOLESTEROL HOMEOSTASIS	-1.22	0.56
KRAS SIGNALING UP	1.16	0.63
HEDGEHOG SIGNALING	1.18	0.65
SPERMATOGENESIS	-1.18	0.66
KRAS SIGNALING DN	1.19	0.70
GLYCOLYSIS	-1.15	0.74
APICAL JUNCTION	1.05	0.81
COMPLEMENT	1.10	0.82
PANCREAS BETA CELLS	1.06	0.85
NOTCH SIGNALING	1.07	0.85
MITOTIC SPINDLE	-1.09	0.86

Results – Trend towards decreased overall survival in EOEGC patients treated with immune checkpoint inhibitors.

Performance : First of Atezolizumab, Ipilimumab, Nivolumab, Pembrolizumab -> Last Contact HR = 1.138 (95% CI: 0.907 - 1.429) p = 0.262 Cohort 1 Median = 195 days (95% CI: 138 days-310 days) Cohort 2 Median = 219 days (95% CI: 193 days-252 days) Median Difference = -24 days (-11.0%) Cohort 1 (115): EGC ICI age < 50 Cohort 2 (869): EGC ICI age >= 50 1.0 Cohort 1 Cohort 2 0.8 0.6 0.4 0.2 0.0 500 1000 1500 2000 0 Time, days Cohort 1 115 15 6 1 Cohort 2 869 149 47 13 3

Immune Checkpoint Inhibitors

Results – Trend towards decreased overall survival in EOEGC patients treated with immune checkpoint inhibitors.

Immune Checkpoint Inhibitors Performance : First of Atezolizumab, Ipilimumab, Nivolumab, Pembrolizumab -> Last Contact p = 0.08249Cohort 1(EGC Age<50 ICI) Median = 6.416 m (95% CI: 4.54 m-10.199 m) Cohort 2(EGC 50<=Age<65 ICI) Median = 6.58 m (95% CI: 5.494 m-7.699 m) Cohort 3(EGC Age>=65 ICI) Median = 7.929 m (95% CI: 6.547 m-9.377 m) Cohort 1:115 1.0 Cohort 2 : 356 Cohort 3 : 513 0.8 OS (probability) 0.6 0.4 0.2 0.0 10 20 0 30 40 50 60 70 Cohort 1: 115 115 42 13 7 14 Cohort 2: 356 356 112 36 10 6 0 0 67 36 14 7 2 0 Cohort 3 : 1290 1290 187

Conclusion

- EOEGC is characterized by:
 - Increased CDH1 mutational frequency
 - Increased frequency of CCNE1, MYC, FGFR2 amplifications and increased ARHGAP26 fusion
 - Decreased MAPK pathway activity
 - Enrichment of genes associated with epithelial-mesenchymal transition and angiogenesis
 - Decreased markers of immunotherapy response
- These characteristics demonstrate the limitations of currently approved therapies and potential therapeutic opportunities in the EOEGC population

Conclusion

- 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424
- 2. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019;144(8):1941-53
- 3. Islami F, DeSantis CE, Jemal A. Incidence Trends of Esophageal and Gastric Cancer Subtypes by Race, Ethnicity, and Age in the United States, 1997-2014. Clin Gastroenterol Hepatol 2019;17(3):429-39
- 4. Bergquist JR, Leiting JL, Habermann EB, Cleary SP, Kendrick ML, Smoot RL, et al. Early-onset gastric cancer is a distinct disease with worrisome trends and oncogenic features. Surgery 2019;166(4):547-55
- Codipilly DC, Sawas T, Dhaliwal L, Johnson ML, Lansing R, Wang KK, et al. Epidemiology and Outcomes of Young-Onset Esophageal Adenocarcinoma: An Analysis from a Population-Based Database. Cancer Epidemiol Biomarkers Prev 2021;30(1):142-9
- 6. Sung H, Siegel RL, Rosenberg PS, Jemal A. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health. 2019;4(3):e137-e147
- 7. Domper Arnal MJ, Ferrandez Arenas A, Lanas Arbeloa A. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol 2015;21(26):7933-43
- 8. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev 2014;23(5):700-13
- 9. Lumish MA, Walch H, Maron SB, Chatila W, Kemel Y, Maio A, et al. Clinical and Molecular Characteristics of Early-Onset versus Average-Onset Esophagogastric Cancer. J Natl Cancer Inst 2023

Acknowledgements

- Columbia
 - Ryan Moy, MD PhD
 - Melissa Accordino, MD MS
 - Alex Wei, MD
 - David Diuguid, MD
- Caris Life Sciences
 - Sachin Deshmukh, PhD
 - Sharon Wu, PhD
 - Joanne Xiu, PhD
 - Alex Farrell, PhD
 - Chadi Nabhan, MD MBA

- Johns Hopkins
 - Vincent Lam, MD
- University of Minnesota
 - Emil Lou, MD PhD
- Rutgers
 - Sanjay Goel, MD MS