Keck School of Medicine of USC

PRECISION ONCOLOGY ALLIANCE

Identification and characterization of immunogenic neoantigens in biliary cancer (BC) and pancreatic cancer (PC)

Francesca Battaglin¹, Andrew Elliott², Joanne Xiu², Sandra Algaze¹, Jingyuan Wang¹, Priya Jayachandran¹, Shivani Soni¹, Karam Ashouri¹, Alexandra Wong¹, Pooja Mittal¹, Jae Ho Lo¹, Lesly Torres-Gonzalez¹, Wu Zhang¹, Benjamin A. Weinberg³, Sanjay Goel⁴, Emil Lou⁵, Anthony El-Khoueiry¹, Heinz-Josef Lenz¹

1 Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA; 2 Caris Life Sciences, Phoenix, AZ; 3 Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC; 4 Department of Oncology, Rutgers Cancer Institute of New Brunswick, NJ; 5 Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN

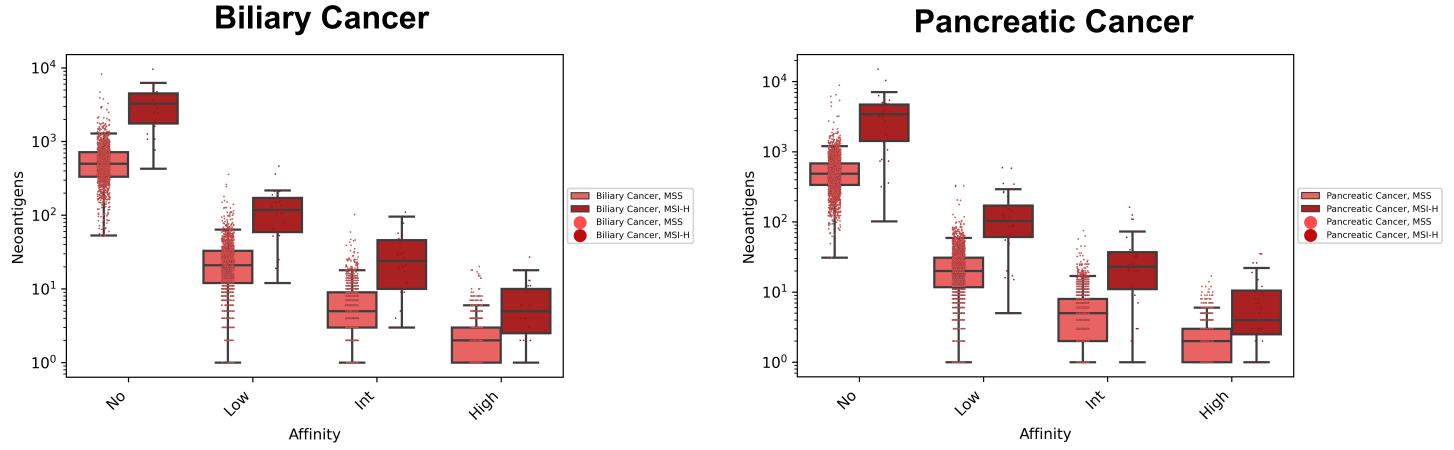
Introduction

- Recognition of tumor neoantigens by autologous T cells activates immune surveillance and has been reported to promote sensitivity to immune checkpoint inhibitors (ICI) in mismatch repair deficient (MMRd)/microsatellite instability high (MSI-H) tumors.
- Neoantigen-targeted reactivity has also been reported in microsatellite stable (MSS) tumors.
- are emerging Neoantigens targets for nove immunotherapy strategies, including tumor vaccines, in BC and PC.
- We aimed to comprehensively assess the spectrum of immunogenic neoantigens in BC and PC.

Methods

 A total of 3728 tumor specimens (1389 BC; 2339 PC) tested at Caris Life Sciences (Phoenix, AZ) with NextGen Sequencing on DNA (720-gene panel) and RNA (whole transcriptome) were analyzed

 9-mer peptides were generated from protein sequences surrounding detected mutations and downstream of frameshift mutations.


• Immune epitope prediction was performed on translated peptide sequences harboring detected mutations using the NetMHCpan v4.0 method in the Immune Epitope Database, with HLA genotyping performed using arcasHLA.

• Binding affinity for patient-specific HLA alleles was classified as: IC50 < 5000 nM: total binding peptides (IC50 < 50 nM: High affinity; 50 nM \leq IC50 < 500 nM: Intermediate affinity; 500 nM \leq IC50 < 5000: Low affinity); IC50 \geq 5000 nM: no affinity.

 Immune/stromal cell abundance in tumor microenvironment (TME) was estimated from RNA expression profiles using MCP-Counter.

Gene expression profiles were analyzed for transcriptional signature predictive of response to immunotherapy (T cell-inflamed signature, TIS).

Study Population	Biliary Cancer	Pancreatic Cancer					
Sample size							
- Tumors, N samples	1389	2339					
Age							
- Years, Median (range)	67 (19-90+)	67 (26-90+)					
Gender							
- Male, N (%)	628 (45.2%)	1215 (51.9%)					
- Female, N (%)	761 (54.8%)	1870 (48.1%)					
TMB-High, N (%)	71 (5.1%)	50 (2.1%)					
MSI-High, N (%)	25 (1.8%)	33 (1.4%)					

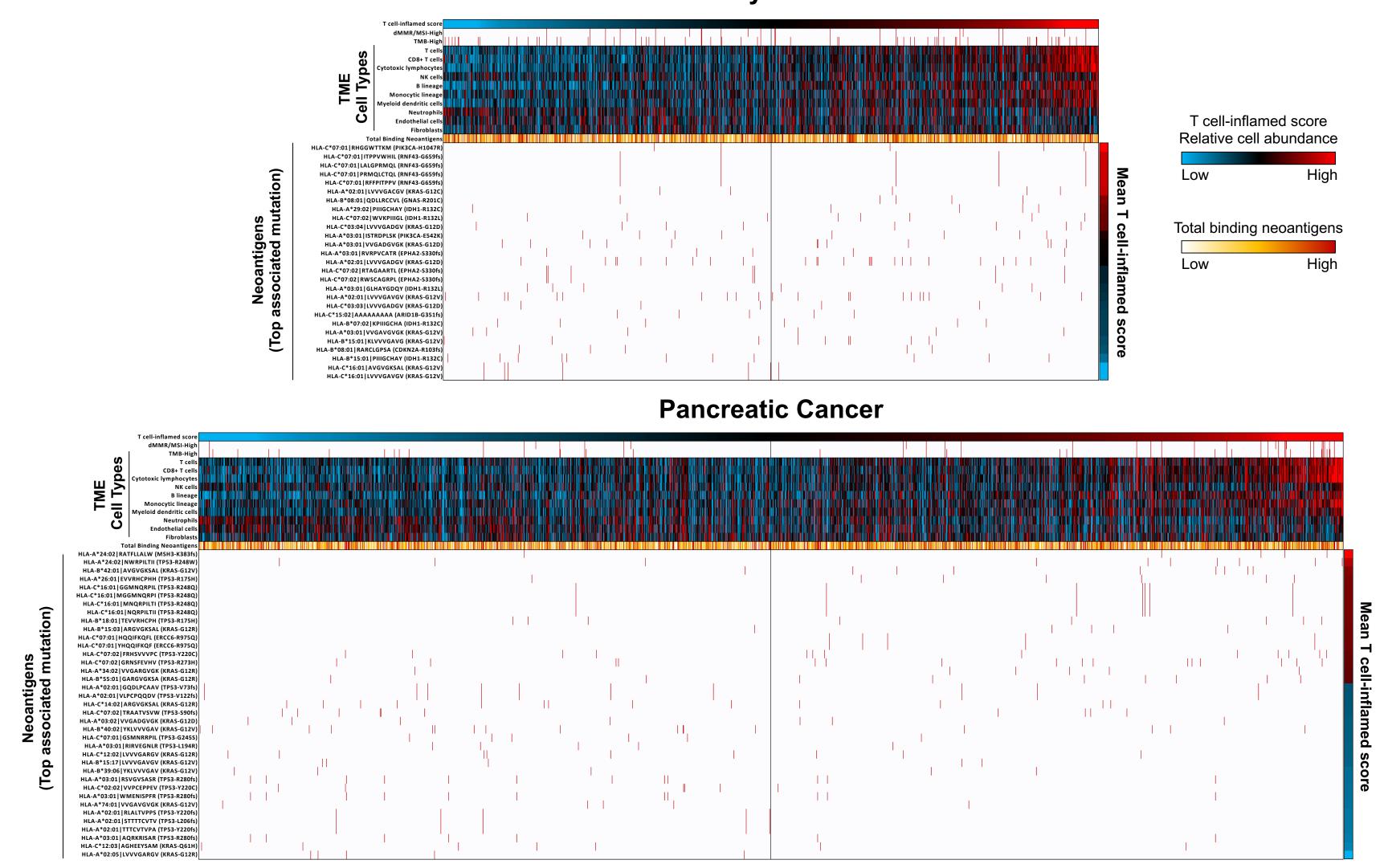
117219 unique peptide: allele interactions with predicted binding-level affinity for patient-specific HLA alleles were identified (48781 in BC; 71182 in PC). MMRd/MSI-H tumors had higher neoantigen load at all affinity levels compared to MMRp/MSS.

Figure 2. Top 20 Recurrent Neoantigens in BC and PC.

Biliary Cancer

Neoantigen	N Samples with Neoantigen by Affinity Level						Binding Top a	Top associated	associated	N Sa	mples wi	th Neoar	Binding	Top associated				
	Binding	High	Int	Low	No	Total	-		Neoantigen	Binding	•	Int	Low	No	Total	Prevalence	•	tation
HLA-A*02:01 LVVVGADGV	24	0	0	24	0	24	1.73%	KRAS G12D	HLA-A*02:01 LVVVGADGV	267	0	0	267	0	267	11.42%	KRAS	G12D
HLA-A*02:01 LVVVGAVGV	21	0	0	21	0	21	1.51%	KRAS G12V	HLA-A*03:01 VVGADGVGK	178	0	0	178	0	178	7.61%	KRAS	G12D
HLA-A*03:01 VVGADGVGK	12	0	0	12	0	12	0.86%	KRAS G12D	HLA-A*02:01 LVVVGAVGV	169	0	0	169	0	169	7.23%	KRAS	G12V
HLA-B*15:01 PIIIGCHAY	11	0	0	11	0	11	0.79%	IDH1 R132C	HLA-A*03:01 VVGAVGVGK	140	0	140	0	0	140	5.99%	KRAS	G12V
HLA-B*15:01 KLVVVGAVG	9	0	0	9	0	9	0.65%	KRAS G12V	HLA-A*03:01 VVGARGVGK	65	0	65	0	0	65	2.78%	KRAS	G12R
HLA-C*07:02 WVKPIIIGL	8	0	0	8	0	8	0.58%	IDH1 R132L	HLA-C*12:03 LVVVGADGV	64	0	0	64	0	64	2.74%	KRAS	G12D
HLA-A*03:01 ISTRDPLSK	8	0	0	8	0	8	0.58%	PIK3CA E542K	HLA-C*07:02 ARGVGKSAL	63	0	0	63	0	63	2.69%	KRAS	G12R
HLA-C*03:04 LVVVGADGV	8	0	0	8	0	8	0.58%	KRAS G12D	HLA-C*16:01 AVGVGKSAL	59	0	0	59	0	59	2.52%	KRAS	G12V
HLA-C*07:02 RTAGAARTL	7	0	0	7	0	7	0.50%	EPHA2 S330fs	HLA-C*16:01 LVVVGAVGV	59	0	0	59	0	59	2.52%	KRAS	G12V
HLA-C*07:02 RWSCAGRPL	7	0	0	7	0	7	0.50%	EPHA2 S330fs	HLA-B*15:01 KLVVVGAVG	55	0	0	55	0	55	2.35%	KRAS	G12V
HLA-C*16:01 LVVVGAVGV	7	0	0	7	0	7	0.50%	KRAS G12V	HLA-B*07:02 AVGVGKSAL	51	0	0	51	0	51	2.18%	KRAS	G12V
HLA-C*16:01 AVGVGKSAL	7	0	0	7	0	7	0.50%	KRAS G12V	HLA-C*03:04 LVVVGADGV	50	0	0	50	0	50	2.14%	KRAS	G12D
HLA-A*03:01 GLHAYGDQY	6	0	0	6	0	6	0.43%	IDH1 R132L	HLA-C*12:03 GAVGVGKSA	46	0	0	46	0	46	1.97%	KRAS	G12V
HLA-A*03:01 VVGAVGVGK	6	0	6	0	0	6	0.43%	KRAS G12V	HLA-C*12:03 AVGVGKSAL	46	0	0	46	0	46	1.97%	KRAS	G12V
HLA-B*07:02 KPIIIGCHA	6	0	0	6	0	6	0.43%	IDH1 R132C	HLA-C*03:03 LVVVGADGV	46	0	0	46	0	46	1.97%	KRAS	G12D
HLA-B*08:01 QDLLRCCVL	5	0	0	5	0	5	0.36%	GNAS R201C	HLA-C*12:03 YKLVVVGAV	46	0	0	46	0	46	1.97%	KRAS	G12V
HLA-C*07:01 PRMQLCTQL	5	0	0	5	0	5	0.36%	RNF43 G659fs	HLA-C*12:03 LVVVGAVGV	46	0	0	46	0	46	1.97%	KRAS	G12V
HLA-C*07:01 RHGGWTTKM	5	0	0	5	0	5	0.36%	PIK3CA H1047R	HLA-A*30:01 VVGAVGVGK	41	0	0	41	0	41	1.75%	KRAS	G12V
HLA-A*03:01 RVRPVCATR	5	0	0	5	0	5	0.36%	EPHA2 S330fs	HLA-C*03:04 LVVVGAVGV	39	0	0	39	0	39	1.67%	KRAS	G12V
HLA-C*03:03 LVVVGADGV	5	0	0	5	0	5	0.36%	KRAS G12D	HLA-C*03:04 AVGVGKSAL	39	0	0	39	0	39	1.67%	KRAS	G12V

Only 4 recurrent neoantigens with binding affinity (observed in >10 samples) were identified in BC and derived from mutations in KRAS (3/4) and IDH1 (1/4), while 78 were found in PC, mostly associated with mutations in KRAS (53/78) and TP53 (16/78). The frequency of individual neoantigens was particularly low in MMRp/MSS BC (< 2%).


Figure 1. Neoantigen Load and Affinity Level in BC and PC.

Pancreatic Cancer

Results

Figure 3. Association with TME cell infiltration and T cell-inflamed signature in BC and PC. **Biliary Cancer**

Across both cancer types, TIS scores positively correlated with the abundance of immune cell populations in the TME, notably cytotoxic lymphocytes (r > 0.40). Recurrent neoantigens associated with highest average

TIS scores resulted from mutation of KRAS (G12D/V, 1.8%/1.5% of samples, respectively) in BC yet mean TIS scores were low (~60th percentile overall). Similarly, TP53 (Y220C/R273C, 0.6%/0.7%, respectively) and CDKN2A (multiple variants, 0.5%) were associated with the highest yet relatively low mean TIS scores in MMRp/MSS PC (~73th percentile) compared to mean TIS scores associated with MSH3 (K383fs, 12%) and KRAS (G12D, 12%) in MMRd/MSI-H PC (~90th percentile).

CONCLUSIONS

This is the largest study to investigate the landscape of immunogenic neoantigens in BC and PC. The frequency of high-level binding affinity neoantigens was relatively low and associated with relatively lower TIS scores in MSS tumors, which may contribute to the immunogenic cold TME characterizing these tumor types.

Abstract ID: 552 fbattagl@usc.edu