Keck School of Medicine of USC

Genomic analysis of esophageal carcinoma (EC) identifies recurrent mutations in histone methyltransferases as a distinctive subset

Jingyuan Wang¹, Joanne Xiu², MatthewOberley², Francesca Battaglin¹, Hiroyuki Arai¹, Shivani Soni¹, Wu Zhang¹, Richard M. Goldberg³, Anthony F. Shields⁴, Axel Grothey⁵, Jimmy J. Hwang⁶, John L. Marshall⁷, Igor Astaturov⁸, Benjamin A. Weinberg⁷, Emil Lou¹⁰, Michael J Hall¹¹, Rachna T. Shroff¹², Moh'd Khushman¹³, Mohamed E. Salem¹⁴, Davendra P.S. Sohal¹⁵, Aaron J. Scott¹², Sanjay Goel¹⁶ and Heinz-Josef Lenz¹

¹ University of Southern California, Los Angeles, California ² Caris Life Sciences, Phoenix, Arizona, USA.³ West Virginia University Cancer Institute, Morgantown, West Virginia.⁴ Karmanos Cancer Institute, Wayne State University, Detroit, Michigan.⁵ West Cancer Center and Research Institute, Germantown, TN.⁶ Levine Cancer Institute, North Carolina ⁷ Georgetown University Medical Center, Washington, D.C.⁸ Fox Chase Cancer Center, Philadelphia, Pennsylvania.⁹ University of Miami/Sylvester Comprehensive Cancer Center, Miami, Florida ¹⁰ University of Minnesota, Minneapolis, Minnesota ¹¹Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA. ¹² Division of Hematology/Oncology, University of Arizona Cancer Center, Tucson, AZ.¹³ Mitchell Cancer Institute, University of South Alabama.¹⁴ Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina.¹⁵ Cleveland Clinic, Cleveland, Ohio ¹⁶ Rutgers Cancer Institute of New Jersey, New Brunswick, NJ.

Introduction

Histone-lysine N-methyltransferase 2 (KMT2) family proteins methylate lysine 4 on the histone H3 tail at important regulatory regions in the genome and thereby impart crucial functions through modulating chromatin structures and DNA accessibility[1], which is associated with tumorigenesis and immune tolerance, indicating its possible correlation with the efficacy of immunotherapy.

Recurrent mutations of *KMT2* have been identified in EC, but data addressing the molecular features of KMT2 mutated (MT) EC are lacking. We aimed to understand the molecular profile of *KMT2*-MT EC.

Methods

A total of 787 oesophageal carcinoma [adenocarcinoma (EAC), N=604; squamous cell carcinoma (ESCC), N=183] were analyzed using next-generation sequencing (NGS) and immunohistochemistry (Caris Life Sciences, Phoenix, AZ).

Tumor mutational burden (TMB) was calculated based on somatic 14.0% 13.0% 12.5% nonsynonymous mutations, and mismatch repair deficiency (dMMR)/microsatellite instability-high (MSI-H) status was evaluated by a combination of IHC, Fragment analysis and NGS.

For PD-L1 expression, PD-L1 SP142 clone was used. PD-L1 positivity was defined as TPS≥1.

Immune-related overall survival (irOS) was defined as the time from initial immunotherapy treatment to the day of death or the end of follow-up.

25.0% 20.0% 15.0% 10.0%

5.0%

Results

Fig1. KMT2 mutations in oesophageal carcinoma [adenocarcinoma (EAC), N=604; squamous cell carcinoma (ESCC), N=183].

Fig2. Mutational landscape of KMT2-MT EA patients, compared with KMT2-WT EA patients. However, in ESCC there were no significant differences in gene mutations between the KMT2-MT and WT groups.

This is the largest study to investigate the distinct genomic landscapes between KMT2-MT and WT EC to date. Our data showed the KMT2-MT EC has a distinctive genetic profile, indicated by higher TMB, and higher frequency of dMMR/MSI-H and gene mutations involved in DDR and epigenetic regulation. Understanding these molecular characteristics may be informative in the development of effective treatment strategies in KMT2-MT EC.

Abstract ID: 379

wangjy_2015pku@163.com

Fig3. TMB in EAC and ESCC with KMT2-MT, compared with KMT2-WT EA patients.

Conclusion