## Abstract 466: Clinical Genomic Implications of Transcriptional Subtypes in Pancreatic Cancer

Authors: Harshabad Singh<sup>1</sup>, Kevin Kapner<sup>1</sup>, Joanne Xiu<sup>2</sup>, Matthew Oberley<sup>2</sup>, Alex Farrell<sup>2</sup>, Jimmy Guo<sup>1</sup>, Rishi Surana<sup>1</sup>, Kimberly Perez<sup>1</sup>, James M. Cleary<sup>1</sup>, Srivatsan Raghavan<sup>1</sup>, Benjamin Weinberg<sup>3</sup>, Michael J. Pishvaian<sup>4</sup>, Rachna T. Shroff<sup>5</sup>, Sanjay Goel<sup>6</sup>, Stephanie K. Dougan<sup>1</sup>, Jonathan A. Nowak<sup>1</sup>, David Spetzler<sup>2</sup>, George Sledge<sup>2</sup>, Brian M. Wolpin<sup>1</sup>, Andrew J. Aguirre<sup>1</sup> 1 – Dana-Farber Cancer Institute, 2 – Caris Life Sciences, 3 – Georgetown University, 4 – John's Hopkins Medical Center , 5 – Mayo Clinic, AZ , 6 – Rutgers University

## **Background/Methods:**

- Transcriptional profiling of pancreatic cancers (PC) has defined classical and basal subtypes
- Basal subtypes have worse prognosis
- Post therapy Mesenchymal (MES) and neural–like progenitor (NRP) states have been defined
- Initial clinical data suggests differential response of transcriptional subtypes with FOLFIRINOX vs. Gemcitabine-nab-Paclitaxel (Gem/nab-P) in PC.
- Basal tumors may preferentially response to Gem/nab-P

<u>Methods:</u>

- Genomic cohort: 7,250 PCs profiled by Caris Life Sciences
- Clinical cohort: 1,623 PCs with additional clinical data available. Survival data was obtained from insurance claims data. Kaplan-Meier estimates were used for survival analysis.
- Transcriptional cell states were identified using RNA-seq

Results:

- 3,063 tumors (42.2%) were strongly classical (SC),
  2,015 tumors (27.8%) were strongly basal (SB)
- MES and NRP marker genes were significantly coexpressed with each other, with basal genes, and anti-correlated with classical genes.

# Basal tumors have worse overall outcomes



# Upfront FOLFIRINOX seems to mitigate worse prognosis of Basal tumors

1<sup>st</sup> line Gem/Nab-P





#### 1<sup>st</sup> line FOLFIRINOX



CARIS<sup>®</sup> PRECISION ONCOLOGY ALLIANCE

Author contact: <u>harshabad\_singh@dfci.harvard.edu</u>

### Classical tumors have significantly lower rates of KRAS, TP53 & ARID1A mutations & significantly higher rates of SMAD4 mutations:



# Basal Tumors display higher levels of PD-L1 and markers of immune exhaustion:



## <u>Quantiseq RNA deconvolution identifies</u> potential TME differences:







Higher in classical tumors

Higher in basal tumors

|        | SC        | SB        |
|--------|-----------|-----------|
|        | n = 3,063 | n = 2,015 |
| KRAS   | 88.0%     | 93.5%     |
| TP53   | 71.8%     | 82.8%     |
| SMAD4  | 22.9%     | 17.1%     |
| ARID1A | 7.9%      | 12.4%     |