

Large-scale transcriptomic profiling of the tumor immune microenvironment in ALK+ lung cancer

¹The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; ²Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA; ³Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA; ⁴Penn State Cancer Institute, Hershey, PA, USA

Introduction

Anaplastic Lymphoma Kinase (ALK) re-arrangements define a distinct molecular subset of non-small cell lung cancer (NSCLC) that predominantly affects younger patients and those with sparse or no smoking exposure. These patients do not derive significant clinical benefit from currently available immune checkpoint inhibitors. Elucidating the mechanisms underlying the immunosuppressive tumor microenvironment will help inform the development novel immunotherapy approaches for ALK+ NSCLC.

Objectives

Characterize major immune components of the tumor microenvironment (TME) by comprehensive transcriptomic and immunohistochemistry (IHC) analyses

Materials and Methods

- We analyzed NGS data from 5490 NSCLC patients that underwent DNA (592 Gene Panel, NextSeq, or WES, NovaSeq) and RNA (NovaSeq, WTS) sequencing at Caris Life Sciences (Phoenix, AZ).
- 374 ALK-rearranged cases were evaluated, along with 3169 KRASmut (*STK11/KEAP1*-wt) and 1947 *EGFR*-mut cases serving as comparators with known heterogenous and inert immune TMEs, respectively.
- PD-L1 (22C3) was evaluated by IHC. Immune cell fractions were inferred using quanTlseq (Finotello, 2019).
- Gene expression profiles were analyzed for a T cell-inflamed signature (TIS; Cristescu 2018) predictive of response to immunotherapy and for other immune modulatory genes such as IFNG, GZMB, TGFB1, and those of the adenosine pathway (CD73/NT5E, CD39/ENTPD1, ADORA1, ADORA2A/B). A significant difference between genomic subgroups was defined as foldchange > 1.2.
- In an independent cohort of 13 ALK+ NSCLC and 5 KRAS+ NSCLC cases, density and spatial organization of CD4+ and CD8+ T cells, Tregs, major myeloid lineage cells, PDL1, and CD73 were assessed by quantitative IHC (Vectra Polaris [Akoya Biosciences] and HALO [Indica Labs])

Figure 1: TMB and PD-L1 Prevalence

Median TMB (mut/MB) was 3.0, 9.0, and 4.0 for ALK, KRAS, and EGFR, respectively. PD-L1 TPS > 1 and TPS > 50.

Vincent K. Lam¹, Archana Balan¹, Qingfeng Zhu¹, Joseph C. Murray¹, Kristen A. Marrone¹, Susan C. Scott¹, Josephine L. Feliciano¹, Christine L. Hann¹, David Ettinger¹, Kellie N. Smith¹, Patrick M. Forde¹, Julie R. Brahmer¹, Benjamin P. Levy¹, Andrew Elliott², Ari Vanderwalde², Matthew Oberley², Stephen V. Liu³, Patrick C. Ma⁴, Robert A. Anders¹, Valsamo Anagnostou¹

Median Expression (TPM) KRAS-mut EGFR-mut ALK+ (Fusion+) CTLA4 3.08 3.64 3.04 HAVCR2 (TIGIT) 32.08 30.26 28.39 C10orf54 (VISTA) 20.26 18.72 17.71 LAG3 1.15 1.62 1.06 9.419 9.591 ADORA1 11.851 1.411 ADORA2A 2.029 1.732 6.612 6.253 ADORA2B 7.135 62.399 107.495 NT5E (CD73) 65.000 6.687 7.185 CD38 7.764 ENTPD1 (CD39) 21.248 21.882 20.897

Table 1: Immune checkpoints, CD73/adenosine LAG-3 (fold-change -1.4 p<0.001), CD73/NT53 (foldchange -1.7 p<0.001), and ADORA2A (fold-change -1.4) p<0.001) were decreased while ADORA1 (fold-change 1.3, p<0.001) was increased compared to *KRAS*-mut.

Positive/Mutated Negative/Wild type

Figure 3: Oncoprint sorted by T cell-inflamed (TIS) score

Each column represents a tumor sample. This oncoprint summarizes quantiSeq immune cell subsets, PD-L1, TMB. No association between ALK+ tumors and TIS.

Conclusion

Despite high levels of PD-L1, *ALK*+ tumors exhibit multiple features of an inert immune TME, primarily characterized by low TMB and decreased CD8+ T cells and immune activation markers. While immunosuppressive factors such as M2 macrophages and adenosine signaling may be targeted, strategies to enhance immunogenicity will be critical for an effective immune response in ALK+ NSCLC.

