Keck School of Medicine of USC

Priya Jayachandran¹, Yasmine Baca², Joanne Xiu², Yuanzhong Pan¹, Phil Walker², Francesca Battaglin¹, Hiroyuki Arai¹, Moh'd Khushman³, Janice Lu¹, Darcy Spicer¹, Shannon Mumenthaler¹, Richard Goldberg⁴, Benjamin A. Weinberg⁵, Emil Lou⁶, Michael Hall⁷, Arielle L. Heeke⁸, W. Michael Korn², Steve A. Kay¹, Heinz-Josef Lenz¹, and Evanthia Roussos Torres¹

1 Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California. 2 Caris Life Sciences, Phoenix, AZ, USA. 3 Department of Hematology-Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham. 4 Section of Hematology/Oncology, West Virginia Cancer Institute. 5 Division of Hematology and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center. 6 Division of Hematology, Oncology and Transplantation, University of Minnesota. 7 Department of Clinical Genetics, Fox Chase Cancer Center. 8 Levine Cancer Institute, Atrium Health.

HR+/HER2-

5140

Priya.Jayachandran@med.usc.edu

Background

Abstract ID: 1309743

• Circadian rhythms are

transcription/translation

feedback loops primarily

transcriptional repressors

cryptochrome (CRY1-2).

• We investigated the

associations of clock genes

molecular and clinical

in breast cancer.

driven by BMAL and

period (PER1-3) and

CLOCK and the

controlled by a network of

- · Disruption of circadian processes has been linked to cancer initiation. progression, metastasis, resistance, and mortality.
- Clock proteins are an emerging target for therapy in breast cancer.

Clock Mechanism

Science. 2021 Jan 1;371(6524):eabb0738

Methods

- A total of 9563 breast tumors underwent molecular profiling (Caris Life Sciences)
- Analyses included next- generation sequencing of DNA (592 genes, NextSeq, WES, NovaSEQ) and RNA (NovaSeq).
- Clock gene Score (CS) was determined using expression of core clock pathway gene Z scores (positives of BMAL, CLOCK and negatives of PER1/2 and CRY1/2) and then stratified into quartiles.
- xCell was used to quantify the immune cell infiltration in the tumor microenvironment (TME)
- ER/PR was tested by IHC and HER2 was tested by either IHC or CISH.
- Significance was determined as *P* values adjusted for multiple comparison (Q) of < .05. Real-world overall survival information was obtained from insurance claims data and was calculated from tissue collection to last contact; comparison done by Kaplan-Meier test.

1. Clock gene score

GENE	Positive feedback	Negative Feedback	
CLOCK	Х		
BMAL1 (ARNTL)	Х		
PER 1		X	Clask score
PER 2		Х	CIOCK SCOLE
CRY 1		X	
CRY 2		Х	

3. Clock gene score in breast molecular subtypes

5. Markers of response to IO therapy for A. TNBC and B. HR+/HER2-

Clock Genes in Breast Cancer

2. Distribution of breast molecular subtypes

Count (N)

TNBC

2484

dMMR/MSI-H

% (TNBC_Q1)

% (TNBC_Q4)

*q<0.05

1.9 1.3

30.0

6. Significant and trending alterations associated with CS in A. TNBC and B. HR+/HER2-

	TNBC_Q1	TNBC_Q4			HR+/HER2-	HR+/HER2-	
Immune cell (xCell)	(Median)	(Median)	q-value	Immune cell (xCell)	_Q1 (Median)	_Q4 (Median)	q-value
Myeloid dendritic cell activated	0.253889	0.328335	**<0.001	Myeloid dendritic cell activated	0.211262	0.238678	**<0.001
B cell	6.33E-19	0.002386	**<0.001	B cell	3.81E-19	2.38E-18	**<0.001
T cell CD4+ memory	0.022207	0.045155	**<0.001	T cell CD4+ memory	0.017613	0.034434	**<0.001
T cell CD4+ naive	0.002161	0.002861	N.S.	T cell CD4+ naive	0.008363	0.005215	N.S.
T cell CD4+ (non-regulatory)	6.15E-20	3.43E-19	**<0.001	T cell CD4+ (non-regulatory)	1.57E-19	1.85E-19	N.S.
T cell CD4+ central memory	0.011173	3.68E-18	**<0.001	T cell CD4+ central memory	0.024243	0.001768	**<0.001
T cell CD4+ effector memory	2.82E-18	1.86E-18	0.017	T cell CD4+ effector memory	2.42E-18	2.17E-18	N.S.
T cell CD8+ naive	0.021326	0.027247	**<0.001	T cell CD8+ naive	0.012221	0.018806	**<0.001
T cell CD8+	0.018134	0.0263	**<0.001	T cell CD8+	0.011215	0.012161	N.S.
T cell CD8+ central memory	4.32E-18	0.003646	**<0.001	T cell CD8+ central memory	2.00E-18	2.85E-18	N.S.
T cell CD8+ effector memory	4.61E-19	7.96E-19	N.S.	T cell CD8+ effector memory	2.98E-19	7.29E-19	N.S.
Class-switched memory B cell	0.005284	0.016363	**<0.001	Class-switched memory B cell	0.011206	0.016455	**<0.001
Common lymphoid progenitor	0.603307	0.739722	**<0.001	Common lymphoid progenitor	0.59754	0.734689	**<0.001
Common myeloid progenitor	0 (38%)	0 (35%)	N.S.	Common myeloid progenitor	0 (48%)	0 (40%)	0.002
Myeloid dendritic cell	0.00234	0.008431	**<0.001	Myeloid dendritic cell	0.000397	0.000618	N.S.
Endothelial cell	0.070049	0.055703	**<0.001	Endothelial cell	0.067142	0.051097	**<0.001
Eosinophil	3.67E-19	1.28E-20	0.002	Eosinophil	3.14E-19	1.85E-19	0.036
Cancer associated fibroblast	1.09E-17	2.83E-18	**<0.001	Cancer associated fibroblast	0.012825	8.44E-18	**<0.001
Granulocyte-monocyte progenitor	3.27E-18	2.49E-18	N.S.	Granulocyte-monocyte progenitor	3.27E-18	2.91E-18	N.S.
Hematopoietic stem cell	0.250199	0.202434	**<0.001	Hematopoietic stem cell	0.289781	0.233997	**<0.001
Macrophage	0.050102	0.061457	**<0.001	Macrophage	0.0413	0.051587	**<0.001
Macrophage M1	0.033201	0.041244	**<0.001	Macrophage M1	0.019178	0.024319	**<0.001
Macrophage M2	0.033064	0.031188	N.S.	Macrophage M2	0.033453	0.033033	N.S.
Mast cell	0.013666	0.015796	0.003	Mast cell	0.024383	0.024552	N.S.
B cell memory	9.28E-19	1.81E-18	**<0.001	B cell memory	8.60E-19	9.39E-19	N.S.
Monocyte	7.05E-18	0.008106	**<0.001	Monocyte	3.55E-18	3.59E-18	N.S.
B cell naive	1.27E-19	7.33E-19	**<0.001	B cell naive	2.66E-19	5.17E-19	0.002
Neutrophil	9.94E-20	1.50E-19	N.S.	Neutrophil	8.20E-20	7.19E-20	N.S.
NK cell	5.35E-20	6.89E-19	0.028	NK cell	6.83E-19	1.16E-18	N.S.
T cell NK	0.052283	0.040422	**<0.001	T cell NK	0.078589	0.072115	0.001

HR+/HER2+

397

Results

HR-/HER2+	Other	Total
291	1251	9563

4. Tumor microenvironment (xcell) for A. TNBC and B. HR+/HER2-

B. IO markers for CLOCK gene score Q1 vs Q4 HR+/HER2-

% (HR+/HER2- Q4)

■ % (HR+/HER2- Q1)

7. Significant KM curves for Clock gene expression

- TNBC had the highest median CS while HR+/HER2- had the lost CS (0.96 vs 0.26 median TPM q<0.001)
- For IO related markers, PDL1 was associated with higher CS in both TNBC (56% Q4 vs 28% Q1, g<0.05) and in HR+/HER2-(24% Q4 vs 14% Q1, q<0.05).
- For the TME in TNBC, CD8+ T cells, B cells, monocytes and NK cells are positively associated with CS, whereas CD4+ central memory and CD4+ effector memory T cells, eosinophils, and endothelial cells are associated with lower CS (Q1 vs Q4 all q<0.05).
- In TNBC, TP53 mutations are associated with higher CS (88% Q4 vs 75% Q1), while CDH1 and STK11 mutations are associated with lower CS (3.4% Q4 vs 8.7% Q1 and 0.1% Q4 vs 2.2% Q1).
- For the TME in HR+/HER2- tumors, there is a decrease in CD4+ central memory cells as well as common myeloid progenitor cells in high CS tumors. There is also a decrease in endothelial cells and eosinophils in high CS tumors. Activated myeloid dendritic cells, B cells, CD4+ memory T cells, CD8+ naïve T cells, M1 macrophages and Tregs all have higher abundance in high CS tumors.
- In HR+/HER2- tumors, TP53 mutations, HMGA2 and LGR5 amplifications and LOH (WES) are all associated with higher CS (39% Q4 vs 23% Q1, 2% Q4 vs 0.4% Q1, 3% Q4 vs 0.4% Q1 and 35% Q4 vs 21% Q1). CDH1, KMT2C and PIK3CA mutations are associated with lower CS (12% Q4 vs 23% Q1, 6% Q4 vs 10% Q1 and 37% Q4 vs 45% Q1) (all q<0.05).
- Expression of Timeless (HR:0.7, CI: 0.65-0.77) and CLOCK (HR: 0.8, CI: 0.72-0.86) below median are associated with longer OS, while expression of CRY2 (HR: 1.4, CI: 1.3-1.6); PER2/3 (HR: 1.1, CI:1.0-1.2; HR:1.3, CI:1.2-1.4) above median are associated with longer OS. In TNBC, IO therapy from TOT survival is significantly prolonged with higher expression of CLOCK (HR: 0.5, CI: 0.41-0.72), TIMELESS (HR: 0.7 CI: 0.53-0.91), ARNTL (HR: 0.7 CI: 0.54-0.92) and CRY1/2 (HR: 0.6, CI: 0.46-0.80; HR: 0.75 CI: 0.57-0.98) but not PER1/2.
- Clock genes are novel predictive and prognostic molecular markers and emerging targets for the development of new treatments in breast cancer.

References

- Battaglin F, Chan P, Pan Y, et al. Clocking cancer: the circadian clock as a target in cancer therapy. Oncogene. 2021;40(18):3187-3200. doi:10.1038/s41388-021-01778-6
- Blakeman, V., Williams, J.L., Meng, QJ. et al. Circadian clocks and breast cancer. Breast Cancer Res 18, 89 (2016). https://doi.org/10.1186/s13058-016-0743-z
- 3. Cadenas C, van de Sandt L, Edlund K, et al. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle. 2014;13(20):3282-3291. doi:10.4161/15384101.2014.954454

	7.82 Mormalized Transcripts : 109
	HR: 0.6
	95% CI: 0.46-0.80
	P<0.001
-	~
	-
300	400 500 600
merence =	26.0 days (25.0%)
CRY2 >= CRY2 < 1	10.78 Normalized Transcripts : 10 10.78 Normalized Transcripts : 109
CRY2 >= CRY2 < 1	10.78 Normalized Transcripts : 10 10 78 Normalized Transcripts : 109 10 Time on treatment TNBC
CRY2 >= CRY2 < 1	10.78 Normalized Transcripts : 10 10 78 Normalized Transcripts : 109 10 Time on treatment TNBC HR: 0.7
CRY2 >= CRY2 < 1	10.78 Normalized Transcripts 10 10 Te Normalized Transcripts 109 10 Time on treatment TNBC HR: 0.7 95% CI: 0.57-0.98
CRY2 >= CRY2 < 1	10.78 Normalized Transcripts 10 0 To Normalized Transcripts 109 10 Time on treatment TNBC HR: 0.7 95% CI: 0.57-0.98 P=0.034
CRY2 >= CRY2 < 1	10.78 Normalized Transcripts 10 10 Te Normalized Transcripts 109 10 Time on treatment TNBC HR: 0.7 95% CI: 0.57-0.98 P=0.034
- CRY2 >= - CRY2 < 1	10.78 Normalized Transcripts 10 10 Te Normalized Transcripts 109 10 Time on treatment TNBC HR: 0.7 95% CI: 0.57-0.98 P=0.034
- CRY2 >= CRY2 < 1	10.78 Normalized Transcripts 10 0 Te Normalized Transcripts 109 IO Time on treatment TNBC HR: 0.7 95% CI: 0.57-0.98 P=0.034
- CRY2 >= - CRY2 < 1	10.78 Normalized Transcripts : 10 10 Te Normalized Transcripts : 109 10 Time on treatment TNBC HR: 0.7 95% CI: 0.57-0.98 P=0.034
- CRY2 >= - CRY2 < 1	10.78 Normalized Transcripts 10 10 Time on treatment TNBC HR: 0.7 95% CI: 0.57-0.98 P=0.034