

HER2 Alterations and Prognostic Implications in All Subtypes of Breast Cancer

Kaitlyn O'Keefe¹, Andrew Elliott², Chad Livasy¹, Meghan Steiner¹, Irene Kang³, Dave S.B. Hoon⁴, Phillip Walker², W. Michael Korn², Milan Radovich², Paula R. Pohlmann⁵, Sandra M. Swain⁶, Antoinette R. Tan¹, Arielle L. Heeke¹

¹Levine Cancer Institute, Atrium Health, Charlotte, NC; ²Caris Life Sciences, Phoenix, AZ; ³University of Southern California Norris Cancer Center, Los Angeles, CA; ⁴ Saint John's Cancer Institute, Santa Monica, CA; ⁵MD Anderson Cancer Center, Houston, TX; ⁶ Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC

INTRODUCTION AND PURPOSE Amplification or overexpression of human epidermal growth factor receptor 2 (HER2) oncogene is present in approximately 15-20% of breast cancers and is a prognostic and predictive biomarker **Overall ERBB2 Variant** Additional ERBB2/HER2 alterations have become apparent on tumor Prevalence 1.5% 1.0% next generation sequencing, including activating kinase domain mutations and fusions Metastatic Primary **METHODS** DNA next generation sequencing (592-gene panel or whole exome) data from 12,153 breast samples were retrospectively reviewed for *ERBB2* alterations, with RNA whole-transcriptome sequencing (WTS) data available for 7289 (60%) samples. Gene fusions were detected TNBC using the ArcherDx fusion assay or WTS. HER2 status was determined according to 2018 ASCO-CAP guidelines Clinicopathologic features were retrospectively reviewed Overall survival was obtained from insurance claims and Kaplan-Meier estimates were calculated for defined patient cohorts Statistical significance was determined using Chi-square and Wilcoxon rank sum tests

RESULTS

Table 1. ERBB2mut frequency by clinicopathologic category

			· · · · · · · · · · · · · · · · · · ·
Study Cohort	Total	ERBB2 mutation	
Characteristics	N (% col)	N (% row)	
Patients	11722 (100)	378 (3.2)	1
Tumors	12153 (100)	388 (3.2)	P-value
Receptor Subtype	S	·	
HR+/HER2+	560 (4.6)	25 (4.5)	*<0.0001
HR-/HER2+	435 (3.6)	18 (4.1)	
HR+/HER2-	6291 (51.8)	227 (3.6)	
TNBC	3464 (28.5)	66 (1.9)*	
Unknown	1403 (11.5)	52 (3.7)	
Age			-
Median (range)	60 (19-90+)	64.5 (24-90+)*	*<0.0001
<50 years	2777 (22.9)	35 (1.3)	
≥50 years	9376 (77.1)	353 (3.8)*	
Histology		·	
Ductal	4323 (35.6)	91 (2.1)	*<0.0001
Lobular	639 (5.2)	64 (10.0)*	(compared
Other/Unknown	7191 (59.2)	233 (3.2)	to Ductal)
Site of biopsy		•	
Breast	4591 (37.8)	98 (2.1)	*<0.0001
Metastatic	7562 (62.2)	290 (3.8)*	
Metastatic sites			
Liver	1972 (26.1)	113 (5.7)*	*<0.0001
Skin/Soft tissue	716 (9.5)	39 (5.4)*	
Other	977 (12.9)	35 (3.6)*	
GYN/GU	171 (2.3)	5 (2.9)	
GI (non-Liver)	177 (2.3)	5 (2.8)	(compared
Bone	997 (13.2)	28 (2.8)	to breast)
Lymph nodes	1365 (18.1)	36 (2.6)	
Lung	811 (10.7)	21 (2.6)	
CNS	376 (5.0)	8 (2.1)	

Figure 1. ERBB2*mut* frequency by biopsy site. *P<0.05 reflects comparison to 'Breast' subgroup. 'Other' subgroup comprised of chest well (34%),

axilla (31%), and 48 other sites.

Figure 2. ERBB2/HER2 alterations across samples. (A) Oncoprint of ERRB2-mutated breast cancer samples grouped by specimen site

Figure 4. ERBB2 mutations identified across paired samples. Oncoprint of patient samples with multiple biopsies grouped by the presence of ERBB2 alterations in both ('shared') or individual biopsies ('unique').

Figure 5. Prognostic and Predictive Value of ERBB2mut.

Overall survival of HER2- and HER2+ breast cancer patients, excluding those treated with HER2-targeted therapies, from time of biopsy ('Prognostic') or from start of chemotherapy.

RESULTS

- *ERBB2* mutations (*ERBB2*mut) were identified in 3.2% of tumors overall [Table 1]
- HER2+ tumors had a higher frequency of *ERBB2*mut compared to HER2-. ERBB2mut were present in 3.6% of HR+/HER2- and 1.9% of TNBC [Table 1]
- *ERBB2*mut were most common in liver metastases (5.7%) [Figure 1]
- ERBB2mut were more common in breast lobular compared to ductal tumors (10.0 vs. 2.1%, p<0.001) [Table 1]
- Metastatic tumors had a higher rate of *ERBB2*mut compared to locoregional breast tumors [Table 1] with increased rates of activating mutations S310F and D769H, and the resistance mutation L755S [Figure 2]
- Tumors with a score of 0 by IHC demonstrated a lower rate of *ERBB2*mut [Figure 3]
- Compared to ERBB2-WT, ERRB2mut were associated with decreased ERBB2 transcripts levels in HER2+ samples (222 vs 441 transcripts per million [TPM], p<0.001) and increased levels in HER2- samples (73 vs 35 TPM, p<0.001)
- High tumor mutational burden (≥ 10 mut/Mb) and *ERBB3* mutations were more common in *ERBB2* mut compared to *ERRB2*-WT (16.7 vs 7.7%, p<0.001; 10.6 vs 0.8%, p<0.001)
- *ERBB2* fusions were rare (0.49%) with 97% occurring in HER2+ BC
- Of 8358 patients with outcome data, prognosis (HR 1.2, P=0.06) and response to chemotherapy (HR 1.1, P=0.42) was similar between patients with HER2- *ERBB2* mut and ERBB2-WT [Figure 5]

CONCLUSIONS

- ERBB2mut and fusions were observed in all breast cancer subtypes, more commonly observed in HER2+, metastatic, and lobular histology tumors, and did not influence prognosis
- These alterations may reflect response to treatment pressures in HER2+ tumors to reactivate HER2-mediated growth pathways and may represent a targetable upregulated oncogenic pathway in HER2- disease
- Ongoing identification of *ERBB2* alterations may augment treatment options for breast cancer patients and clinical outcomes from this approach are under investigation

INFORMATION

Presenter email: Kaitlyn.Okeefe@atriumhealth.org Abstract Number: 371652

PRECISION ONCOLOGY ALLIANCE