Keck School of Medicine of USC

Claudin 18 (CLDN18) gene expression and related molecular profile in gastric cancer (GC)

Annika Lenz¹, Jia Zeng², Joanne Xiu², Sandra Algaze¹, Priya Jayachandran¹, Shivani Soni¹, Jae Ho Lo¹, Hiroyuki Arai¹, Wu Zhang¹, Pavel Brodskiy², Peter Hosein⁷, Benjamin A. Weinberg³, Emil Lou⁴, Anthony F. Shields⁵, Richard M. Goldberg⁶, John L. Marshall³, W. Michael Korn², Heinz-Josef Lenz¹, Francesca Battaglin¹, Evanthia Roussos-Torres¹

1 Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA 2 Caris Life Sciences, Phoenix, AZ, USA 3 Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA 4 Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA 5 Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA 6 West Virginia University Cancer Institute, Morgantown, WV, USA7 University of Miami, Miami, FL, USA

Introduction

- Claudins are transmembrane proteins which maintain the tight junction between cells.
- The stomach specific isoform, CLDN18 isoform 2 (CLDN18.2), is emerging as a promising treatment target because of high expression in GC cells, including targeting via adoptive T-cell strategies for gastric cancer immunotherapy treatments
- Previous clinical trials using antibodies targeting CLDN18.2 have demonstrated promising results with improved survival in CLDN18.2-expressing patients compared to those who only received chemotherapy.
- We characterized the molecular features associated with CLDN18 isoform and 2 (CLDN18.1/18.2) gene expression in GC.
- We tested whether tumor expressing high levels of CLDN18.1/18.2 display distinct molecular features, exhibit specific tumor immune biomarkers, and reveal trends with levels of immune cells in the tumor microenvironment (TME) in comparison to low expressing tumors.

Methods

- A total of 1967 CRC tested at Caris Life Sciences (Phoenix, AZ) with NextGen Sequencing on DNA (Illumina Next Seq, 592 genes, or Illumina NovaSeq, WES) and RNA (Illumina NovaSeq, WTS) were analyzed.
- Top quartile transcripts per million (TPMs) for CLDN18.1/18.2 expression were considered high (Q4) while bottom quartile low (Q1) expression.
- EBER (Epstein Barr Virus) was tested by CISH.
- Cell infiltration in the tumor microenvironment (TME) was estimated by quanTIseq.
- · Gene expression profiles were analyzed for a transcriptional signature predictive of response to immunotherapy (T cell-inflamed signature, TIS).
- X², Fisher-exact, and Mann Whitney U tests were used and significance adjusted for multiple testing by Benjamini-Hochberg (q < .05).

Figure 1. CLDN18.1 and 18.2 Expression between Primary **Tumors vs Metastatic Sites.**

Primary tumors had significantly higher expression levels of both *CLDN18.1/18.2* (Fold Change *18.1*: 0.50; *18.2*: 0.65), compared to metastatic tumors (p < .05). CLDN18.2 expression was detected in 97% of the samples and CLDN18.1 in 63%.

Figure 2. Primary CLDN18.1 and 18.2 Low and High Expression in relation to Genomic Alteration Markers.

mutation and EBER (p < .05, q > .05).

Figure 3. Primary CLDN18.2 Low and High Expression in relation to TME quanTlseq.

CLDN18.1/18.2 displayed an inverse relationship with M1 Macrophages, NK cells, CD4+ Γ cells, myeloid dendritic cells in the TME (q < .05). Higher CLDN18 expression was associated with fewer immune cells and a colder TME, especially in isoform 2.

Figure 4. Primary CLDN18.1 and 18.2 Low and High Expression in relation to Immuno-Oncology Markers.

correlation with PD-L1 and TMB-H (p < .05; q > .05).

Results

Figure 5. Association between CLDN **Expression and TIS Score**.

CLDN18.2

Gen CLD

CLD CTN

CTN

OCL

B. Low Group

Gene1	Gene2	Exon1	Exon2	Count
CLDN18	ARHGAP26	exon 5	exon 12	3

The TIS score was significantly higher in the CLDN18.2 high expression group (q < .05), but lower in CLDN18.1 high expression group (q <.0001), respectively.

CONCLUSIONS

Tumors expressing high *CLDN18*, especially 18.2, displayed distinct genomic and transcriptomic alterations in immune biomarkers and immune cell infiltration in the TME.

Anti-CLDN18.2 monoclonal antibodies are being tested in GC and CLDN18 is a target for ADC and CAR-T therapies, our data suggest that expression may play a role in guiding patient selection and treatment combinations.

Abstract ID: 4048

fbattagl@usc.edu

Figure 6. ARHGAP26 Fusions in *CLDN*18.2 A. High Group

ne1	Gene2	Exon1	Exon2	count
N18	ARHGAP26	exon 4	exon 11	2
N18	ARHGAP26	exon 5	exon 10	5
N18	ARHGAP26	exon 5	exon 12	19
N18	ARHGAP26	exon 5	exon 8	1
ND1	ARHGAP26	exon 15	exon 12	1
ND1	ARHGAP26	exon 16	exon 13	1
LN	ARHGAP26	exon 4	exon 12	4

CLDN18.2 high expression group had higher CLDN18:ARHGAP26 fusion positive rate (low vs high: 0.91% vs 5.5%, q < .0001). The most common fusion between CLDN18 exon 5 and ARHGAP26 exon 12.