

Abstract# 2056: Capicua (*CIC*) mutations in gliomas in association with MAPK activation for exposing a potential therapeutic target

Sourat Darabi¹, Joanne Xiu², Santosh Kesari³, Dan Magee⁴, Jose Carrillo³, Sonikpreet Aulakh⁵, Kyle M. Walsh⁶, Soma Sengupta⁷, Ashely Sumrall⁸ , David Spetzler², Michael Glantz⁹, W. Michael Korn², Michael J Demeure^{1,10}

¹Hoag Family Cancer Institute, Newport Beach, CA; ²Caris Life Sciences, Phoenix, AZ; ³Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA; ⁴UC Irvine, Orange, CA; ⁵West Virginia University, Morgantown, WV; ⁶Duke University School of Medicine, Durham, NC; ⁷University of Cincinnati College of Medicine, Cincinnati, OH; ⁸Levine Cancer Institute, Charlotte, NC; ⁹Penn State Hershey Medical Center, Hershey, PA; ^{1,10}Translational Research Institute, Phoenix, AZ

Background:

- CIC is a tumor suppressor gene, transcriptional repressor, and a member of the high mobility (HMG)-box protein family
- CIC is a negative regulator of MAPK and RTK pathways
- CIC Mutations have been reported in 40% of oligodendrogliomas
- The purpose of this study was to explore the key signaling pathways associated with CIC

Methods:

- Consecutive glioma tumors were analyzed using Nex-Gen sequencing of the DNA (NextSeq, 592 genes or NovaSeq, wholeexome) and RNA (NovaSeq, whole transcriptome sequencing) and IHC (Caris Life Sciences, Phoenix, AZ).
- Immune cell fraction was calculated by QuantiSeq; MAPK activation score (MPAS) was evaluated using RNAseq data (Wagle 2018).
- Comparative analysis was done using Chisquare or Fisher's-exact test when appropriate. With p values adjusted for multiple corrections (q) by Benjamini-Hochberg.

Selected References:

Wang B, et al. Cell Rep. 2017; 18(6):1534-1557 Lam YC, et al. Cell. 2006; 127(7): 1335-47 Okimoto RA, et al. Nat Genet. 2017; 49(1): 87-96 Lee Y, et al. Dev Cell. 2011; 21(4): 746 Wagle MC, et al. NPJ Precision Oncology. 2018; 2:7

Results:

- A total of 5266 gliomas were analyzed
- CIC mutations occurred in 3.7% of tumors, most frequently in oligodendrogliomas (50%) (Table)
- *CIC* mutations were associated with a higher prevalence of *IDH1/2* mutations
- There exists an overall mutual exclusivity for CIC with other MAPK genomic drivers (NF1, BRAF, KRAS, EGFRamp, EGFRvar)- Fig 1
- CIC mutations were associated with increased MPAS score in oligodendrogliomas (p=0.01), particularly when compared to tumors lacking additional MAPK drivers (p=0.001)- Fig 2

Table- Prevalence of CIC mutations in glioma tumors

Cancer Types	MT	WT	Total	%
Glioblastoma	24	3729	3753	0.6%
Astrocytoma	16	813	829	1.9%
Astrocytoma-Anaplastic/Grade				
3/High Grade	12	498	510	2.4%
Astrocytoma-Diffuse/Grade 2/Low				
Grade	4	257	261	1.5%
Astrocytoma-Pilocytic/Grade 1	0	58	58	0.0%
Ependymoma	0	13	13	0.0%
Ganglioglioma	0	24	24	0.0%
Glioneuronal	0	27	27	0.0%
Gliosarcoma	1	127	128	0.8%
Mixed/unclear	12	173	185	6.5%
Oligodendroglioma	143	142	285	50.2%
Oligodendroglioma-				
Anaplastic/Grade 3/High Grade	73	69	142	51.4%
Oligodendroglioma-Diffuse/Grade				
2/Low Grade	70	73	143	49.0%
Pleomorphic xanthoastrocytoma	0	22	22	0.0%
Total	196	5070	5266	3.7%

Figure 1- Molecular comparison of *CIC***-mutant vs. wild type tumors.** a. comparison in all tumors. b. canonical MAPK drivers in astrocytoma and glioblastoma. C. canonical MAPK drivers in oligodendrogliomas

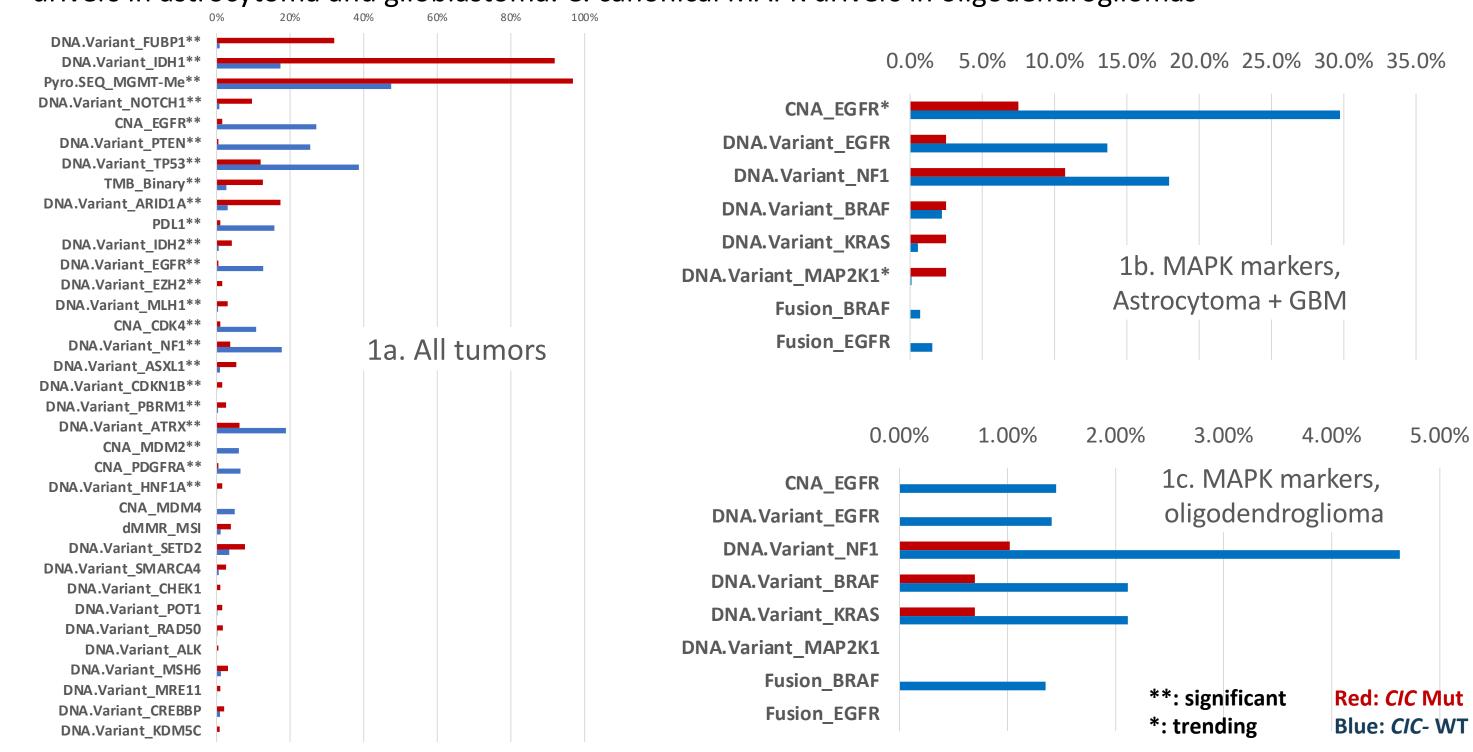
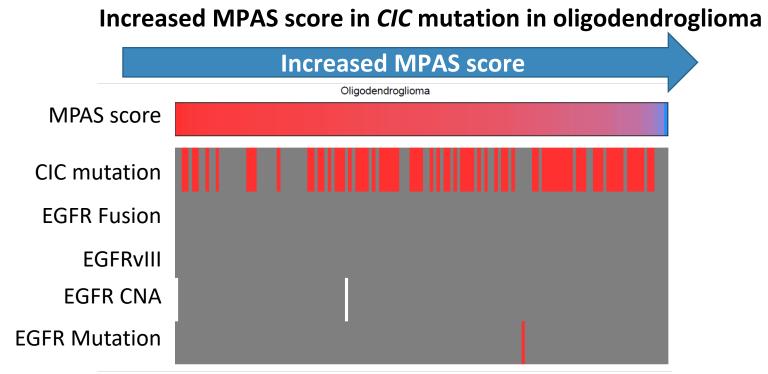
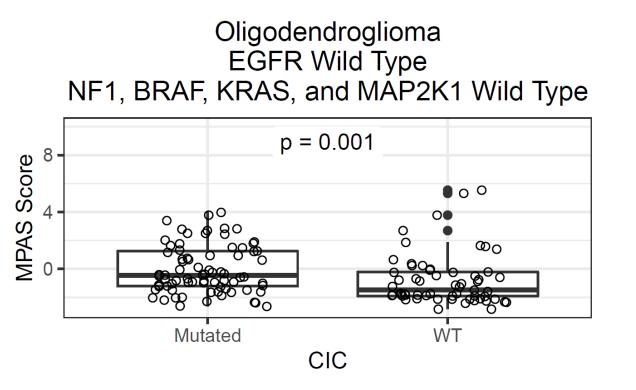




Figure 2- MPAS score in oligodendroglioma tumors and association with canonical MAPK drivers.

CIC mt were associated with increased MPAS score in oligodendrogliomas (p=0.01) and the effect was more obvious when CIC mt were compared to tumors lacking additional MAPK drivers (p=0.001).

The effect is not seen in astrocytic tumors, although *EGFR* alterations including CNA, *EGFRvIII*, *EGFR* fusion, and mt were independently associated with increased MPAS scores (p<0.001).

Conclusions:

CIC mutations are detected frequently in oligodendrogliomas and are associated with a more favorable prognostic markers. Targeted inhibition of MAPK pathway could be explored.