

Age-associated differences in transcriptional expression and tumor immune microenvironment composition among older patients with cancer

Khalil Choucair¹, Abdul Rafeh Nagash², April K.S. Salama³, Chul Kim⁴, Andrew Elliott⁵, Matthew James Oberley⁵, Phillip Walker⁵, Azhar Saeed⁶, Wafik S. El-Deiry⁷, Himisha Beltran⁸, Chadi Nabhan⁵, Stephen V. Liu⁴, Caroline Nebhan⁹, Anwaar Saeed¹⁰

¹University of Kansas School of Medicine, Wichita, KS; ²Medical Oncology/ TSET Phase 1 Program, Stephenson Cancer Center, University of Oklahoma City, OK; ³Division of Medical Oncology, Duke University Medical Center, Duke Cancer Institute, Durham, NC; ⁴Georgetown University, Washington, DC; ⁵Caris Life Sciences, Phoenix, AZ; ⁶University of Minnesota, Minneapolis, MN; ⁷Cancer Center at Brown University, Providence, RI; ⁸Dana Farber Cancer Institute, Boston, MA; ⁹Vanderbilt-Ingram Cancer Center, Nashville, TN; ¹⁰Kansas University Cancer Center, Westwood, KS

Background

- Older patients (pts) with cancer are underrepresented in registrational clinical trials for immune checkpoint inhibitor (ICI) therapies.
- Are there any relevant differences in the makeup of the tumor microenvironment (TME) and in genomic signatures of cancer in older pts?

Methods

- Next-generation sequencing (CLIA-certified laboratory; Caris Life Sciences, Phoenix, AZ)
- DNA (592 gene panel, NextSeq or whole-exome sequencing, NovaSeq) - CLIA-certified laboratory
- RNA (whole transcriptome sequencing, NovaSeq)
- PD-L1 expression assessment by immunohistochemistry (IHC), and high tumor mutational burden (TMB-H) was defined as ≥10 mut/Mb.
- Pt samples: non-small cell lung carcinoma (NSCLC; n = 19,891), melanoma (MEL n = 2,899), and renal cell carcinoma (RCC; n = 1,333)
- Age subgroup stratification: ≥80 and < 80 years (yr)
- Comparison of DNA damage response (DDR) gene alterations, gene expression profiling, and TME analysis (MCP-counter; Becht, 2016).

Table 1 – Baseline characteristics

ASCO Annual. June 2022.

Pts ≥80 yr accounted for 16.0%, 19.9% and 5.3% of NSCLC, MEL and RCC pts, respectively.

Tumor Type >	NSCLC		MEL		RCC	
Age groups (years)>	≥ 80	< 80	≥ 80	< 80	≥ 80	< 80
Total Count (N;%)	2739 (16.0)	17152 (84.0)	482 (19.9)	2417 (80.9)	67 (5.3)	1266 (94.7)
Median Age	83.0	67.0	84.0	65.0	81.0	63.0
Male (%)	50.6 (1387/2739)	50.3 (8630/17152)	67.6 (326/482)	60.9 (1471/2417)	77.6 (52/67)	70.9 (898/1266)
Female (%)	49.4 (1352/2739)	49.7 (8522/17152)	32.4 (156/482)	39.1 (946/2417)	22.4 (15/67)	29.1 (368/1266)

Results

14

Figure 1. Mutation landscape

Compared to pts < 80 yr, NSCLC and MEL pts ≥80 yr had similar DDR gene mutation rates, while BRCA1 mutations were more common in MEL pts ≥80 yr (2.1 vs. 0.8%; exploratory-p < 0.05).

Figure 3 – TME

NSCLC ≥80 yr TMEs had increased abundance of fibroblasts (1.09fold, p < 0.01), dendritic cells (1.07-fold, p < 0.01) and macrophages (1.04-fold, p < 0.01), and MEL≥80 yr TMEs had fewer infiltrating Tlymphocytes (0.87-fold, p = 0.02).

Figure 4 – Immune checkpoint genes

decreased (0.88-fold; p < 0.05).

Figure 2 – IO-related biomarkers

TMB-H was less common in NSCLC (29.7 vs. 36.5%, p < 0.001) and more common in MEL pts ≥80 yr (65.7 vs. 49.0%, p < 0.01), and PD-L1 (IHC-SP142, $\geq 2+|5\%|$ expression was less frequent in RCC pts ≥ 80 yr (9.1 vs.) 19.4%, exploratory p < 0.05).

Figure 5 – glutamine and glucose metabolism

Profiling of glutamine and glucose metabolism-related genes revealed increased SLC38A5 (1.17-fold; p < 0.0001) and decreased G6PC (0.65fold, p < 0.01) expression in NSCLC \geq 80 yr. While not statistically significant, MEL and RCC pts ≥80 yr had opposite trends for SLC38A5 and G6PC expression

Increased expression of immune checkpoint (IC) genes PDCDL1G2 (PD-L2; 1.11-fold), HAVCR2 (TIM-3; 1.11-fold), and CD80/86 (1.07/1.08fold, p < 0.05) was seen in NSCLC pts ≥80 yr, while IL-6 expression was

The largest change in IC gene expression was for IL-6 (1.24-fold, p = 0.78) in MEL, and GZMB (0.56-fold; p = 0.17) in RCC

Conclusions

- biomarkers of response to ICIs

Contact info:

PRECISION ONCOLOGY ALLIANCE

Our analysis provides new insights to immune landscape of NSCLC, MEL, and RCC pts \geq 80 yr. Differential gene expression and TME composition changes in this population suggest unique, cancer-specific therapeutic opportunities, and a potential to explore

Khalil Choucair, MD, MSc kchoucair@kumc.edu; choucair.k@gmail.com