

A Pan-cancer Analysis of Impact of MDM2/MDM4 on Immune Checkpoint Blockade (ICB).

¹Wafik S. El-Deiry, ²Taylor Arnoff, ³Ilyas Sahin, ⁴Hossein Borghaei, ⁵Vivek Subbiah, ²Hina Khan, ²Benedito A. Carneiro, ²Howard Safran, ²Stephanie L. Graff, ²Don S. Dizon, ⁶Elisabeth I. Heath, ²Eric T. Wong, ²Abbas Abbas, ²Christopher G. Azzoli, ⁷Michael J. Demeure, ⁸Jim Abraham,⁹ Razelle Kurzrock, ⁸Joanne Xiu, ¹⁰Emil Lou, ¹¹Stephen V. Liu

¹Cancer Center at Brown University, Providence, RI; ²Brown University, The Warren Alpert Medical School, Providence, RI; ³Rhode Island Hospital, Providence, RI; ⁴Fox Chase Cancer Center, Philadelphia, PA; ⁵ The University of Texas MD Anderson Cancer Center, Houston, TX; ⁶ Karmanos Cancer Institute, Department of Oncology, Detroit, MI; ⁷ Hoag Family Cancer Institute, Hoag Memorial Hospital Presbyterian, Newport Beach, CA; ⁸Caris Life Sciences, Phoenix, AZ; ⁹ University of California, San Diego, San Diego, CA, ¹⁰University of Minnesota School of Medicine, Minneapolis, MN; ¹¹Georgetown University, Department of Hematology and Oncology, School of Medicine, Washington, DC

Background

- *MDM2/MDM4* are implicated in hyperprogression after immune checkpoint blockade (ICB or IO).
- Our preclinical studies showed reduced T-cell killing of *MDM2*amplified tumor cells that was overcome by an MDM2 antagonist or gene knockdown, and we observed additional tumor killing by T-cells with MDM2 inhibition plus anti-PD1.
- We hypothesized that *MDM2/4* gene amplification/overexpression correlates with resistance to ICB and investigated the association of MDM2/4 alterations to overall survival (OS) following ICB across multiple solid tumors.

Methods

- Solid tumors tested at Caris Life Sciences (Phoenix, AZ) with NextGen Sequencing on DNA (NGS) were analyzed.
- *MDM2/4* amplification (amp) was tested by NGS and determined as either amp4 (cutoff of >=4.0 copies) or amp6 (>=6.0) or amp8 (>=8.0).
- Real-world OS was obtained from insurance claims data and calculated from treatment start or tissue collection to last contact.
- Kaplan-Meier estimates were calculated for molecularly defined groups. X²/Fisher-Exact were used and significance determined as Pvalue adjusted for multiple comparisons (q<0.05).

Results

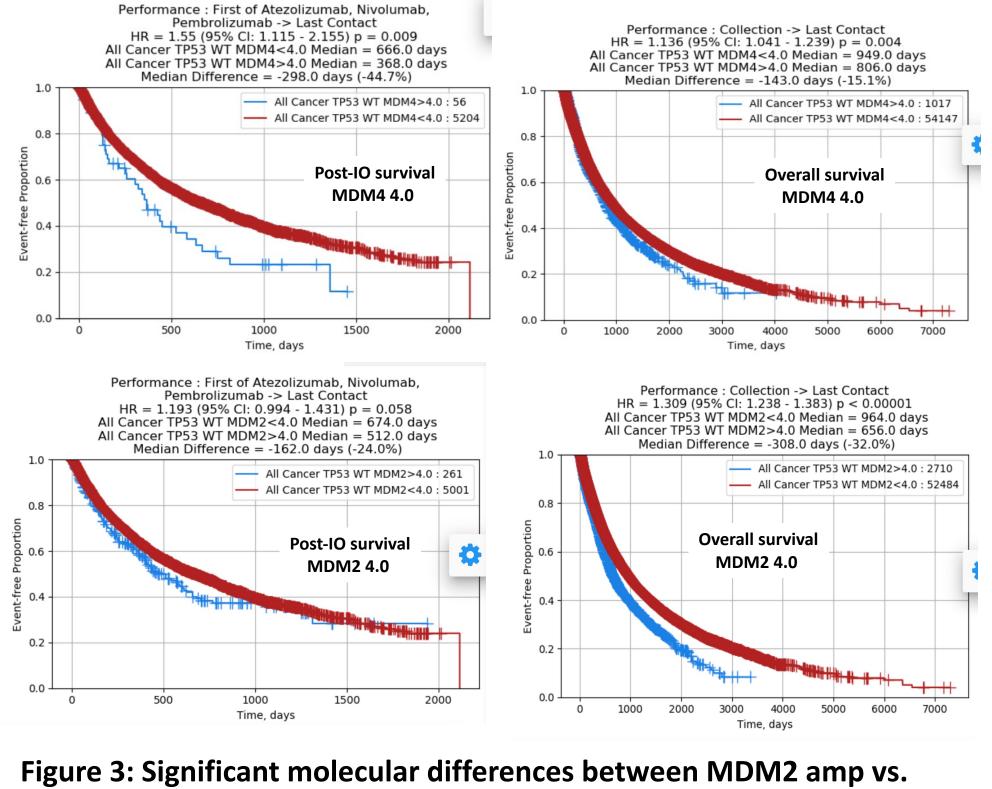
Table 1: Patient cohort characteristics

Number of patients included for the study								
	MDM4			MDM2				
	MDM4>	MDM4>	MDM4>	MDM2>	MDM2>	MDM2>		
All cases	4.0	6.0	8.0	4.0	6.0	8.0		
Total N	1669	380	266	4053	2745	2115		
Treated with IO (pembro, nivo, atezo)	100	13	7	373	248	185		
TP53-WT tumors	MDM4>	MDM4>	MDM4>	MDM2>	MDM2>	MDM2>		
	4.0	6.0	8.0	4.0	6.0	8.0		
Total N	1040	293	217	2785	2108	1721		
Treated with IO (pembro, nivo, atezo)	59	8	4	262	192	149		

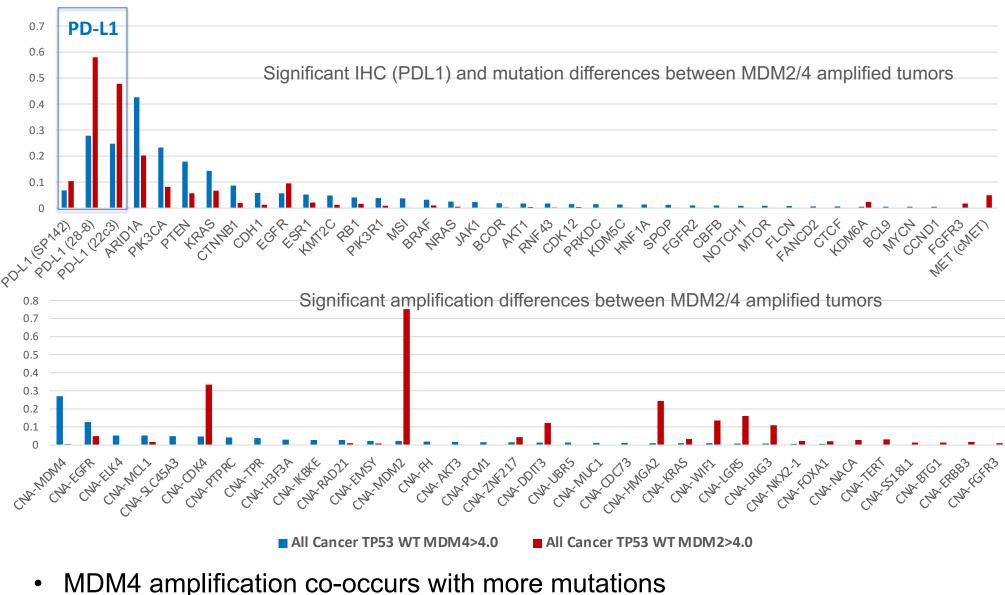
Results

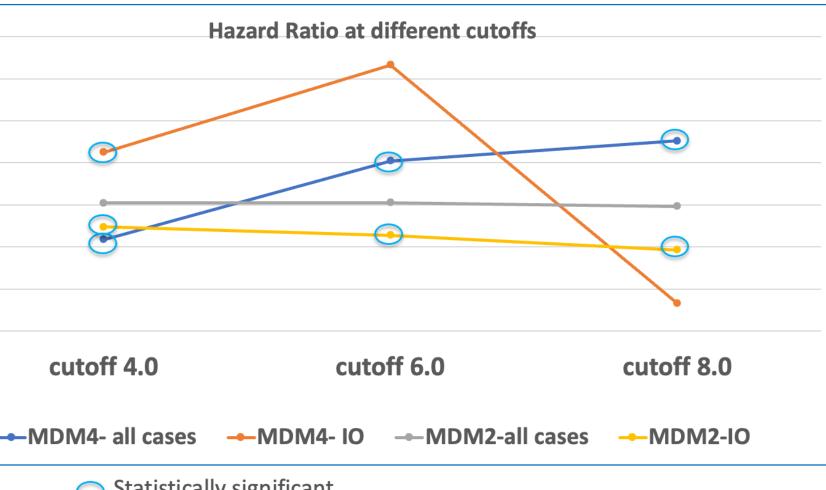
Soft Tissu

Figure 1: MDM2/4 clinical behavior in all solid tumors. Y-axis: Hazard ratios calculated from KM based on either overall survival (calculated from tissue collection to last day of contact) or post-IO survival (calculated from start of IO treatment to last day of contact)


2.1	
2.1	
1.9	
1.7	
1.5	
1.3	
1.1	
0.9	
0.7	
	-

- prognosis)

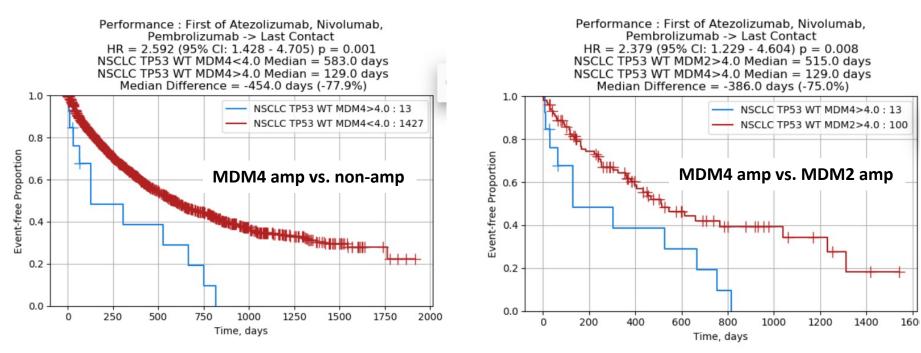

Table 2: Cancer type break down in TP53 Wild type cohort


TP53 WT, MDM4>4.0, total =1040, top 12 cancer types	n
Breast Carcinoma	302
Glioblastoma	212
Uterine Neoplasms	115
Lung Non-small cell lung cancer NSCLC	75
Ovarian Surface Epithelial Carcinomas	55
Prostatic Adenocarcinoma	53
Melanoma	40
Cholangiocarcinoma	24
Cancer of Unknown Primary	23
Neuroendocrine tumors	16
Soft Tissue Tumors	13
Pancreatic Adenocarcinoma	12
TP53 WT, MDM2>6.0, top 12 cancer types	n
Lung Non-small cell lung cancer NSCLC	423
Glioblastoma	270
Breast Carcinoma	249
Bladder cancer - urothelial	235
ue Sarcoma - Well-Differentiated_Dedifferentiated Liposarcoma WD-DDLS for	
Retroperitoneal Sarcomas	171
Soft Tissue Tumors	121
Esophageal and Esophagogastric Junction Carcinoma	81
Cholangiocarcinoma	78
Melanoma	65
Gastric Adenocarcinoma	64
Uterine Neoplasms	56
Cancer of Unknown Primary	46

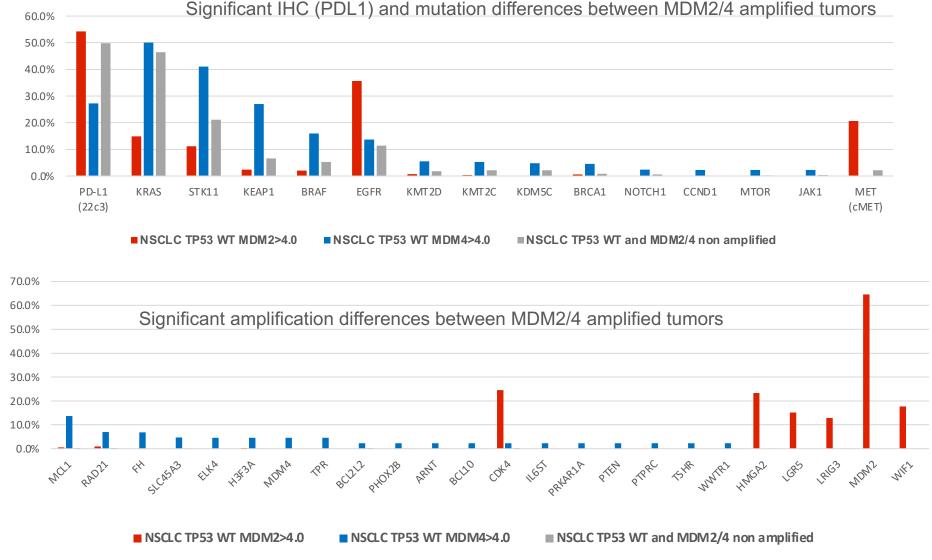
Results

MDM4 amp in all solid tumors. Y axis: prevalence of alterations in MDM2/4 amp cases

Statistically significant


• Detrimental effects of MDM2/4 amplification for prognosis seen at all cutoffs

• Increased MDM4 cutoff associated with higher HR (more detrimental effects on


Largely unchanged HR with increased MDM2 cutoff

Results Figure 4: MDM4 amplification (at 4.0 cutoff) associated with decreased survival after IO treatment in NSCLC

Figure 5: Significant molecular differences between MDM2 amp vs. **MDM4 amp in NSCLC.** Y axis: prevalence of alterations in MDM2/4 amp cases

- NSCLC
- PDL1 expression significantly higher in MDM2 amp tumors

Conclusions

survival in ICB-treated NSCLC.

Figure 2: example Kaplan Meier curves in all solid tumors

• PDL1 expression significantly higher in MDM2 amp tumors

MDM2 and MDM4 amplification are negative prognostic factors in TP53-WT breast cancer while *MDM4* amp is associated with reduced

• MDM2 and MDM4 amplification occur with different molecular drivers in

PRECISION ONCOLOGY

ALLIANCE