2021 **ASCO**[®] ANNUAL MEETING

LARGE SCALE MULTI-OMIC ANALYSIS SUGGESTS MECHANISMS OF RESISTANCE TO IMMUNOTHERAPY IN LEIOMYOSARCOMA

Galina Lagos, Roman Groisberg, Don S. Dizon, Andrew Elliott, Tabitha Copeland, Andreas Seeber, Geoffrey Thomas Gibney, Margaret von Mehren, Kenneth Cardona, Michael J. Demeure, Richard F. Riedel, Vaia Florou, Alexander J. Chou, Abhijeet Kumar, Jaime Modiano, Moh'd M. Khushman, Gina Z. D'Amato, Andrea P. Espejo Freire, W. Michael Korn, Jonathan C. Trent

EMORY

...........

A

Background

Leiomyosarcoma (LMS)

- Rare mesenchymal tumors of smooth muscle differentiation \bullet
- 10-20% of newly diagnosed soft tissue sarcomas •
- Most commonly arise in the uterus, retroperitoneum, skin, other soft tissue sites \bullet Genetically complex tumors without clear oncogenic drivers \bullet
- Limited effective systemic treatment options \bullet

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Immune Microenvironment (IME) in LMS

- Immunophenotyping of 19 LMS tumors suggests an inflamed IME relative to other • sarcoma subtypes (Pollack et al. Cancer 2017)
 - Higher expression of genes related to antigen presentation and T-cell-mediated immunity, higher T cell receptor clonality compared to LPS and SS, 35% of LMS with high PD-L1 expression by IHC
- A subset of LMS have high densities of tumor associated macrophages (TAMs); in non-gynecologic LMS increased TAM density is a negative predictor of disease specific survival (Lee et al. Clinical Cancer Research 2008)

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Clinical Experiences with Immunotherapy in Leiomyosarcoma

SARC 028- phase II trial of pembrolizumab in sarcomas (Tawbi et al Lancet Oncology 2017)

 0/10 LMS patients with treatment response Phase II trial of nivolumab in uterine leiomyosarcoma (Ben-Ami et al. Cancer 2017)

- 0/12 patients with treatment response
- Alliance A091401- two phase II trials of nivolumab+/- ipilimumab in STS (D'Angelo et al Lancet Oncology 2018)
 - 1/15 LMS patients with response to nivolumab monotherapy
 - 2/14 LMS patients with response to nivolumab/ipilimumab •

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Study Design

Study Objectives

- Explore potential mechanisms of immunotherapy resistance in LMS with ightarrowcomprehensive genomic profiling
- Characterize the immune microenvironment and immune related gene expression within LMS subtypes and compare with melanoma

Retrospective genomic and transcriptomic analysis of 1115 LMS specimens sequenced through Caris Life Sciences

Characteristic	All cases	Soft tissue LMS	Uterine LMS
Total, N specimens (%)	1115 (100%)	414 (37.1%)	701 (62.9%)
- N patients (%)	1077 (100%)	407 (36.5%)	671 (62.3%)
Median Age, years (range)	59 (9-90+)	64 (9-90+)	57 (23-90+)
Female, N (%)	961	260	701
	(86.2%)	(62.8%)	(100%)
Metastatic+Local recurrence, N(%)	561	205	356
	(50.3%)	(49.5%)	(50.8%)
Analyzed by WTS, N (%)	535	315	220
	(48.0%)	(76.1%)	(31.4%)

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

PD-L1 Expression

- Immunohistochemistry for PD-L1 (SP142) •
 - PD-L1 positive = 2+ stain intensity, $\geq 5\%$ positive tumor cells

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Tumor Mutation Burden and dMMR/MSI-H Status

dMMR evaluated with IHC, MSI-H with NGS • TMB-H defined as ≥ 10 mutations/Mb •

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Gene Set Enrichment Analysis – stLMS vs. uLMS

 Immune related gene sets are enriched i stLMS compared to uLMS

Red= uLMS; Blue=stLMS

Presented By: Galina Lagos

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

	Hallmark Gene Set	NES	FDR q-v
n	Interferon Gamma Response	-1.744	0.02
	Interferon Alpha Response	-1.675	0.02
	Inflammatory Response	-1.658	0.024
	IL-6/JAK/STAT3 Signaling	-1.611	0.03
	TNFα Signaling via NF-KB	-1.610	0.02

NES= normalized enrichment score; FDR=false discovery rate, (-)NES = enriched in stLMS

2021 **ASCO**[®]

ANNUAL MEETING

Immune cell infiltration derived from transcriptomic analysis – stLMS vs. uLMS

Immune cell infiltration is increased in stLMS over uLMS

 >2-fold increase in CD8 T cell and B cell abundance (p<0.0001)

*p<0.05, adjusted for multiple hypothesis testing (Benjamini-Hochberg)

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Association between markers of IO response and immune cell infiltration in the overall LMS cohort

Cell Type	Biomarker	Median abundance	P-value	
CD8+ T cell	MSS	0.6	0.0259	
	MSI-High	2.5		
	TMB-Low	0.6	0.0116	
	TMB-High	1.6		
	PD-L1-neg	0.6	0.0015	
	PD-L1-pos	2.0		
Bcell	MSS	14.3	0.0687	
	MSI-High	92.2		
	TMB-Low	13.9	0.0082	
	TMB-High	113.8		
	PD-L1-neg	13.9	0.0091	
	PD-L1-pos	25.5		

Presented By: Galina Lagos **#ASCO21** | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

mmune cell infiltration derived from transcriptomic analysis- LMS vs. melanoma

Immune cell infiltration is increased in melanoma over LMS

- >11-fold increase in B cell abundance
- >3 fold increase in CD8+ and cytotoxic T cell abundance Fibroblasts more prevalent in LMS over melanoma (>3 fold increase)

T-cell Inflamed Signature– LMS vs. melanoma

- **JITC 2018)**
- TIS scores are significantly higher in melanoma relative to both stLMS and uLMS

Melanoma Quartile	stLMS	uLMS
Q4	9.1%	3.2%
Q3	20.5%	9.2%
Q2	39.5%	26.7%
Q1	30.9%	61.0%

• T-cell Inflamed Signature (TIS)= 18 gene panel indicative of a T cell activated TME that is associated with response to pembrolizumab across multiple solid tumors (Ayers et al JCI 2017, Danaher et al

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

2021 **ASCO**[®] ANNUAL MEETING

Conclusions

- Small proportion of LMS with classic markers of IO response
- stLMS has a more immune active microenvironment relative to uLMS
- TME in LMS has low T cell and high fibroblast abundance relative to melanoma \bullet
- A smaller proportion of LMS have a T cell inflamed microenvironment relative to melanoma
- **Future Directions**
- Incorporate clinical data to determine the predictive role of these biomarkers in LMS for immunotherapy response
- Validate and refine our findings with IHC studies and single cell sequencing Design IO trials using combination therapy in LMS to overcome the observed T-cell
- exclusion/desmoplastic phenotype

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

