
2021 ASCO® ANNUAL MEETING

HIGH CXCR4 EXPRESSION IN PANCREATIC DUCTAL ADENOCARCINOMA IS CHARACTERIZED BY AN INFLAMMATORY TUMOR PHENOTYPE WITH POTENTIAL IMPLICATIONS FOR AN IMMUNOTHERAPEUTIC APPROACH

Andreas Seeber, MD PhD

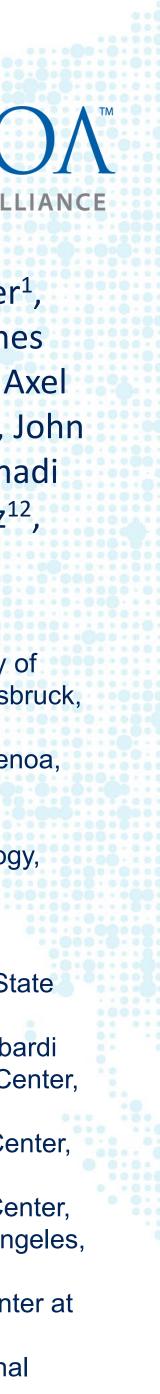
Department of Hematology and Oncology Comprehensive Cancer Center Innsbruck Medical University Innsbruck, Austria

Abstract number: 4021

Florian Kocher¹, Alberto Puccini², Andreas Pircher¹, Yasmine Baca³, Joanne Xiu³, Kai Zimmer¹, Johannes Haybaeck⁴, Gilbert Spizzo⁵, Richard M. Goldberg⁶, Axel Grothey⁷, Anthony F. Shields⁸, Mohamed E. Salem⁹, John L. Marshall¹⁰, Michael Hall¹¹, W. Michael Korn³, Chadi Nabhan³, Francesca Battaglin¹², Heinz-Josef Lenz¹², Dominik Wolf¹

¹Department of Hematology and Oncology, Medical University of Innsbruck, Comprehensive Cancer Center Innsbruck (CCCI), Innsbruck, Austria; ²Medical Oncology Unit 1, Ospedale Policlinico San Martino, Genoa,

> Italy; ³Caris Life Sciences, AZ, USA;


 ⁴Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria;
 ⁵Peripheral Hospital of Bressanone, Bressanone, Italy;
 ⁶West Cancer Center, Germantown, TN, USA;
 ⁷Department of Oncology, Karmanos Cancer Institute, Wayne State

University, Detroit, MI, USA; ⁸Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,

Washington, DC, USA; ⁹Department of Hematology and Oncology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA; ¹⁰Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA;

¹¹Department of Pathology and Laboratory Medicine, Cancer Center at Brown University, Providence, RI, USA;
¹²Division of Hematology and Oncology, Department of Internal

Medicine, University of Texas Southwestern

Background / Aim of the project

- Single agent immune checkpoint inhibitors largely ineffective in pancreatic ductal adenocarcinoma (PDAC) (1).
- C-X-C motif chemokine receptor 4 (CXCR4)-CXCL12 axis modulates the immune tumor microenvironment (TME) in preclinical models (2)
- BL-8040 (motixafortide) is a small synthetic peptide that binds CXCR4

mouse models (3)

- → COMBAT trial/KEYNOTE202: BL-8040 + pembrolizumab +/- chemotherapy (4) - Cohort 1: 31 chemo-resistant pts treated, with BL8040+pembro: DCR=34.5% - Cohort 2: 22 pts treated with BL8040+pembro+chemo: DCR=77% and mDoR=7.8m

Aim of the project: Describing the molecular and immunological landscape of CXCR4 PDAC

(1) Brahmer JR et al, N Engl J Med 2012; (2) Seo YD et al, Clin Cancer Res 2019; (3) Gaur P et al, J Clin Oncol 2018; Bockorny B et al, Nat Med 2020

 \rightarrow blockade of which promotes T cell infiltration; is synergistic with anti-PD1 therapy in

Patients and Methods

- 3,647 PDACs were analyzed using whole-exome sequencing, whole-transcriptome sequencing and immunohistochemistry (at Caris Life Sciences, Phoenix, AZ, USA).
- Pathway gene enrichment analyses were done using GSEA.
- Immune cell fraction was calculated by QuantiSeq.
- Survival was extracted from insurance claims data and calculated from time of tissue collection to last contact using Kaplan-Meier estimate.
- Cell-type specific CXCR4 expression was analyzed using the Human Protein Atlas.

(1) Subramanian et al., Proc Natl Acad Sci U S A. 2005; (2) Finotello et al., Genome Med. 2019

Patients characteristics & TPM distributions

Quantiles						
100.0%	maximum	792.955				
99.5%		279.76264				
97.5%		176.5853				
90.0%		102.022				
75.0%	quartile	59.3156				
50.0%	median	32.021				
25.0%	quartile	17.0308				
10.0%		8.953114				
2.5%		4.397366				
0.5%		2.0988304				
0.0%	minimum	0.451832				

Summary Statistics					
Mean	47.106357				
Std Dev	49.461024				
Std Err Mean	0.8190213				
Upper 95% Mean	48.712143				
Lower 95% Mean	45.500572				
N	3647				

	1								
	Qua	artile 1	Quart	tile 2	Qu	artile 3	Qua	rtile 4	
Gender	N	Average Age	N	Average Age	N	Average Age	N	Average Age	Total
Female	416	67.2	408	65.8	425	66.6	438	65.4	1687
Male	496	64.5	504	64.1	486	64.8	474	65.7	1960
Total	912		912		911		912		3647

Percentile	Quartile	Value		
25th	1	17.05505		
50th	2	32.021		
75th	3	59.3091		
Max	4	792.955		

Genetic analyses reveal a distinct molecular profile

Differences in CXCR4 gene expression were linked to other gene alterations, such as ERBB2 and TNFRSF14. Further, GNAS mutation was much more frequently detected in CXCR4 high tumors compared to CXCR4 low expressors.

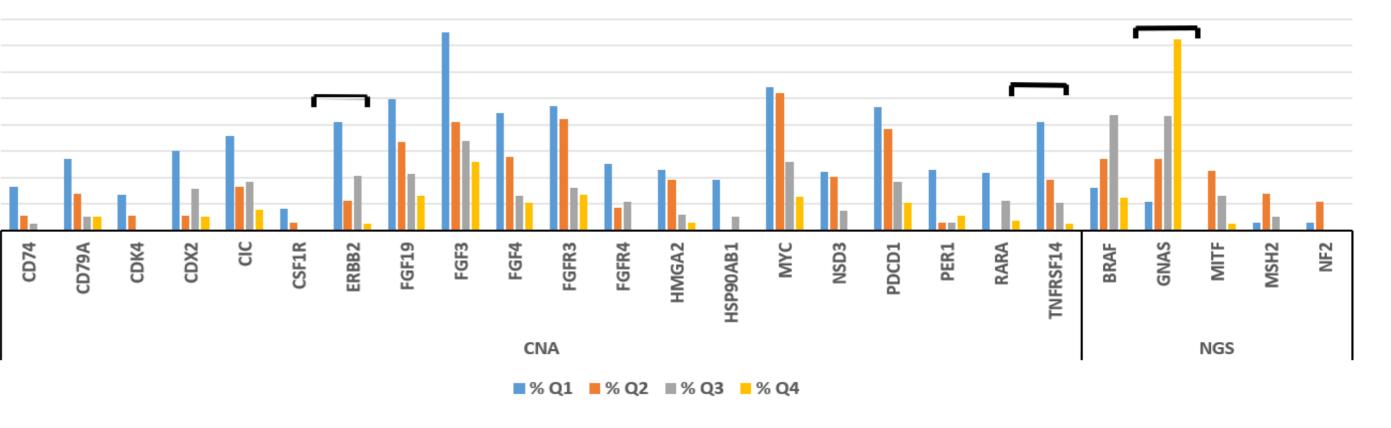
Gene sets of signal transduction pathways (FBXW7, GNA13, GNAQ, GNAS, GNA11) showed a significantly higher frequency of genomic alterations (mutations and copy number amplifications) in CXCR4 high tumors. Inversely, TP53 pathway genes and RTK pathway genes had lower alteration rates in CXCR4 high tumors.

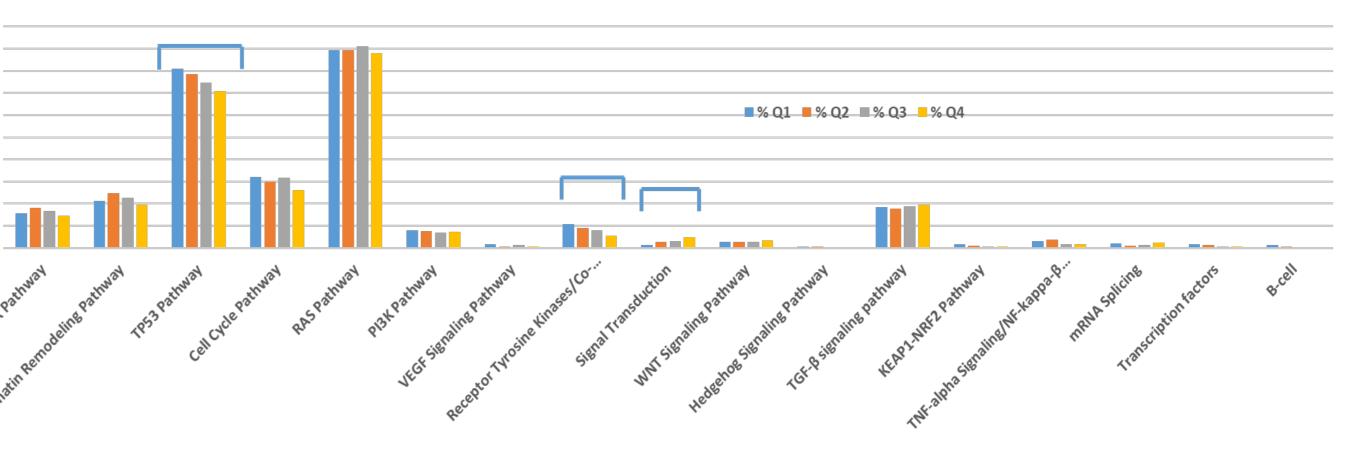
Connective lines: statistically significant after correction for multiple comparison

3.5%

2,5%

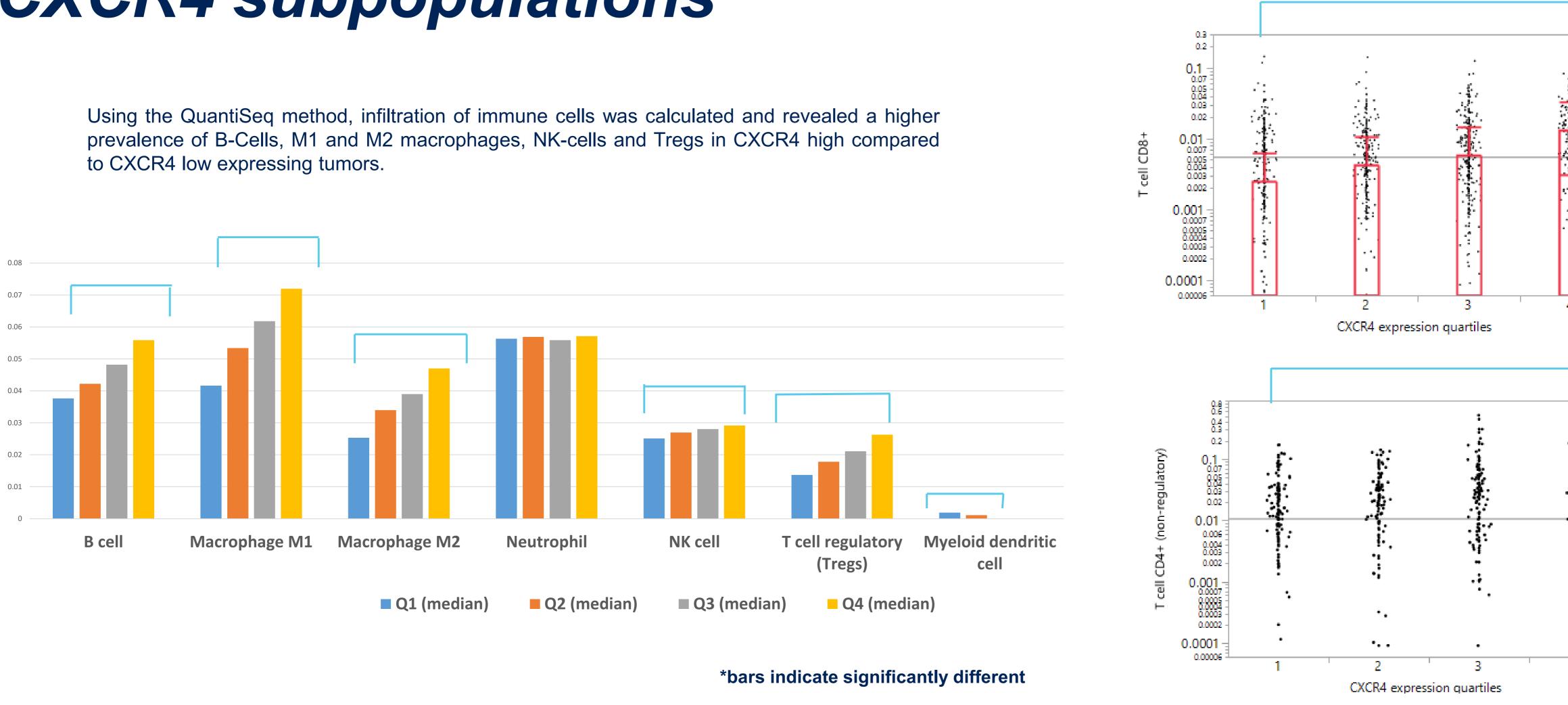
2,0% 1,5%

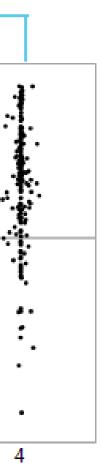

1,0%


0,5%

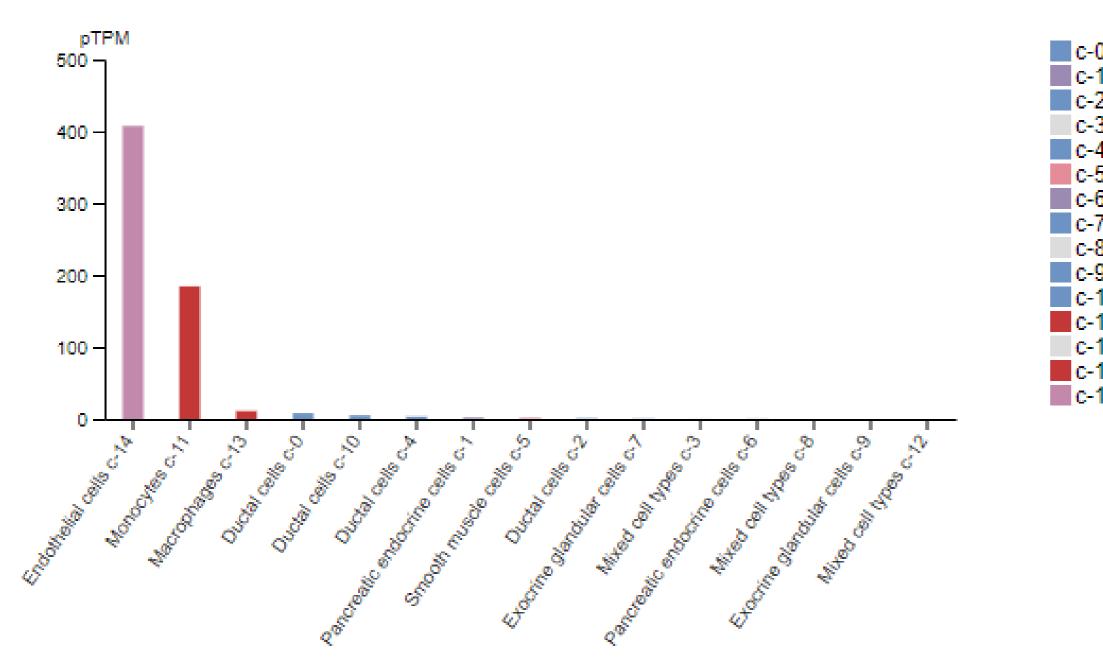
0.0%

10.0%



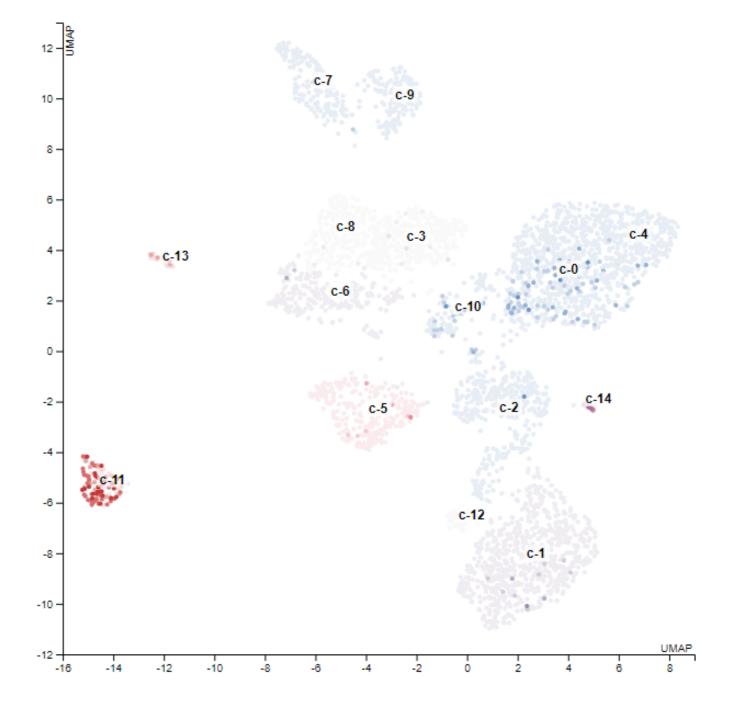

Tumor microenvironment in **CXCR4** subpopulations

Presented By: Andreas Seeber, MD PhD



CXCR4 expression & survival

Human Protein Atlas-based analyses revealed, that CXCR4 is predominantly expressed in endothelial cells and monocytes. Left: relative CXCR4 RNA expression status according to cell types. Right: Scatter plot illustrating cell clusters.



The Human Protein Atlas: www.proteinatlas.org

- c-0 Ductal cells (n=697) c-1 Pancreatic endocrine cells (n=687) c-2 Ductal cells (n=356)
- c-3 Mixed cell types (n=352)
- c-4 Ductal cells (n=345)
- c-5 Smooth muscle cells (n=283)
- c-6 Pancreatic endocrine cells (n=246)
- C-7 Exocrine glandular cells (n=166)
- c-8 Mixed cell types (n=156)
- C-9 Exocrine glandular cells (n=147)
- c-10 Ductal cells (n=103)
- c-11 Monocytes (n=99)
- c-12 Mixed cell types (n=34)
- c-13 Macrophages (n=30)
- c-14 Endothelial cells (n=18)

- landscape of CXCR4 in PDAC.
- CXCR4 expression is associated with a pro-inflammatory immune cell signature in PDAC.
- immunotherapy.

Content of this presentation is the property of the author, licensed by ASCO. #ASCO21 Permission required for reuse.

• This is the first study deciphering the immunlogical/genetic

CXCR4 high expressors might be a potential candidates for

