UNIVERSITY OF MINNESOTA Driven to Discover*

HER2 in Uterine Serous Carcinoma: Testing platforms and implications for targeted therapy

Authors: TR Klc¹, S Wu², AM Wilhite³, NL Jones³, MA Powell⁴, A Olawaiye⁵, F Simpkins⁵, E Girda⁶, J Brown⁷, A Puechl⁷, R Ali-Fehmi⁸, IS Winer⁸, TJ Herzog⁹, WM Korn², BK Erickson¹ ¹University of Minnesota, Minneapolis, MN; ²Caris Life Sciences, Phoenix, AZ; ³ Mitchell Cancer Institute, University of South Alabama, Mobile, AL; ⁴Washington University of Pittsburgh, PA; ⁶Rutgers Cancer Institute of New Jersey, Rutgers Health, New Brunswick, NJ; ⁷Levine Cancer Institute, Atrium Health, Charlotte, NC; ⁸Karmanos Cancer Institute. Wayne State University, Detroit, MI; ⁹University of Cincinnati Cancer Institute, Cincinnati, OH.

Background:

- Uterine serous carcinoma (USC) is a rare, aggressive, poor prognostic subtype of endometrial cancer.
- HER2 is an emerging prognostic and therapeutic target in USC.
- Optimal testing platforms in uterine cancer have not been established.

Objective:

- Describe the rate of HER2 positivity in uterine serous carcinoma by in situ hybridization (ISH) and immunohistochemistry (IHC) and to assess the concordance of these testing platforms.
- Determine the rate of potential downstream mutations that may affect response to HER2 directed therapy.

Methods:

- 2,192 primary and recurrent USC tumors analyzed using next generation sequencing (NextSeq, 592 Genes and WES, NovSEQ), a subset of tumors were tested by immunohistochemistry (IHC; 4B5, Ventana) and chromogenic in situ hybridization (CISH: INFORM DUAL HER2 ISH Assay. Ventana) (Caris Life Sciences, Phoenix, AZ).
- HER2 positivity was determined based on 2007 and 2018 ASCO/CAP HER2 breast cancer guidelines.
- PD-L1 expression was tested by IHC using SP142 (Spring Biosciences) (positive cut-off >1, 1%). Microsatellite instability (MSI) was tested by fragment analysis, IHC, and NGS. Tumor mutational burden (TMB) was measured by totaling somatic mutations per tumor (TMB-high cut-off > 10 mutations per Mb).
- Statistical significance was determined using chi-square.

There is HIGH CONCORDANCE between CISH and IHC in determining HER2 positivity in Uterine Serous Carcinoma

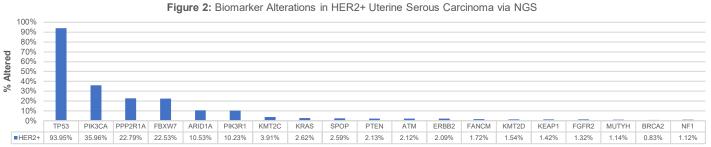
OR code

here

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] and the author of this poster.

Author conta

Results:


- HER2 positivity rates were comparable using the 2018 and 2007 breast cancer guidelines (19.5% vs 17.5%; p=0.25).
- The concordance between IHC and CISH was 98.9%, based on 2018 guidelines. 16% of tumors were IHC+/CISH+, 0.4% were IHC+/CISH-, and 0.8% were IHC-/CISH+ (Table 1)
- ERBB2 amplification (\geq 6 copies) was identified in 10.5% of tumors. Compared to CISH, this corresponds to a concordance rate of 91.6% and a positive predictive value of 98.5% (Table 2)
- HER2+ tumors had low immunotherapy biomarker profiles (Figure 1)
- There was a low frequency of single cell gene alteration that may predict resistance to HER2 directed therapy (PI3K, KRAS, and PTEN) (Figure 2)

Future Directions:

• Validating these testing platforms by response to HER2 targeted therapies in order to develop USC specific HER2 testing guidelines.

Table 1. Concordance between IHC and CISH by ASCO/CAP Breast Cancer Guidelines

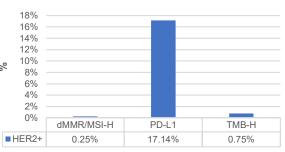

ASCO/CAP Guidelines (Breast Cancer)	IHC+/CISH+	IHC-/CISH-	IHC+/CISH-	IHC-/CISH+	Concordance (%)	Sensitivity (%)	Specificity (%)	PPV (%)
2007	164	1160	2	8	99.3	98.8	99.3	95.3
2018	229	1178	5	11	98.9	97.9	99.1	95.4

	Table 2. Concordance between CISH and ERBB2 Amplification.										
	ASCO/CAP Guidelines (Breast Cancer)	CISH+/Amplified+	CISH-/Amplified-	CISH-/Amplified+	CISH+/Amplified-	Concordance (%)	Sensitivity (%)	Specificity (%)	PPV (%)		
tact: klc0001@umn.edu	2007	185	1184	4	106	92.6	63.6	91.8	97.9		
	2018	191	1224	3	126	91.6	60.3	90.7	98.5		

Figure 1. Immunotherapy Biomarkers in HER2+ Uterine Serous Carcinoma

HER2 determined by 2018 Breast Cancer Guidelines (all patients who were CISH+. IHC+ or CNA amplified)