

Genomic and immunologic characterization of large-cell neuroendocrine carcinoma of the lung

Chul Kim¹, Julie McGrath², Joanne Xiu², Misako Nagasaka⁴, Patrick Ma⁵, Jorge Nieva⁶, Gilberto Lopes⁶, Gilberto Lopes⁷, Hossein Borghaeiø, Chukwuemeka Ikpeazu⁷, Taofeek Owonikoko⁶, Michael J. Demeure¹⁰ Antoinette Wozniak¹¹, Chadi Naban², W. Michael Korn²,³, Stephen V. Liu¹¹Georgetown University, Washington, DC ²Caris Life Sciences, Phoenix, AZ ³UCSF Hellen Diller Family Cancer Center, University of California San Francisco, CA ⁴Karmanos Cancer Institute/Wayne State University, Detroit, MI ⁵Penn State Cancer Institute, Hershey, PA ⁶Keck School of Medicine USC, Los Angeles, CA ¹University of Miami Sylvester Comprehensive Cancer Center, Plantation, FL ⁶Fox Chase Cancer Center, Pepartment of Hematology and Oncology, Philadelphia, PA ⁰Winship Cancer Institute of Emory University, Atlanta, GA ¹⁰Hoag Family Cancer Institute, Newport Beach, CA ¹¹University of Pittsburgh Medical Center, Pittsburgh, PA

Introduction

- Large-cell neuroendocrine carcinoma (LCNEC) is a rare type of lung cancer consisting of 1-3% of lung cancer cases with a poor prognosis.
- Due to its rarity, molecular characterization of LCNEC is not well elucidated.
- 50-60% of patients present with stage IV disease and no large randomized clinical trial data are available to determine the optimal treatment strategy.
- We aim to understand the genomic and immunologic landscape of LCNEC to identify molecular alterations and relevant biological pathways with potential therapeutic value.

Methods

- Comprehensive molecular profiling including whole exome sequencing (WES), targeted next-generation sequencing (NGS), whole transcriptome sequencing (WTS), and immunohistochemistry (IHC) for PD-L1 (22c3 pharmDx) was performed.
- Tumor mutational burden (TMB) was calculated by counting all non-synonymous missense, nonsense, in-frame insertion/deletion and frameshift mutations found per tumor that had not been previously described as germline alterations.
- LCNEC was categorized as small cell lung cancer (SCLC)-like LCNEC (TP53/RB1 comutated) and non-small-cell lung cancer (NSCLC)-like LCNEC (wild type for one or both of TP53/RB1).
- Molecular features of LCNEC were compared among the subcategories and with those of SCLC using the Chi-Square test with Benjamini & Hochberg correction.

Table 1. Types of tumor samples included in analysis

Tumor type	Number of samples	
LCNEC *	467	
SCLC-like LCNEC**	112 (24%)	
NCSLC-like LCNEC**	335 (73%)	
SCLC	442	

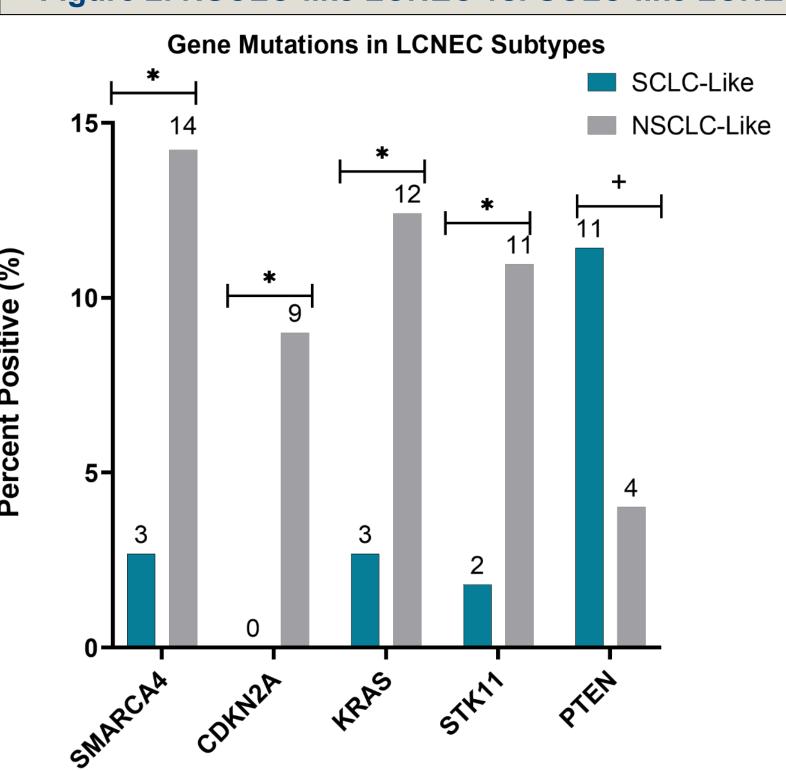
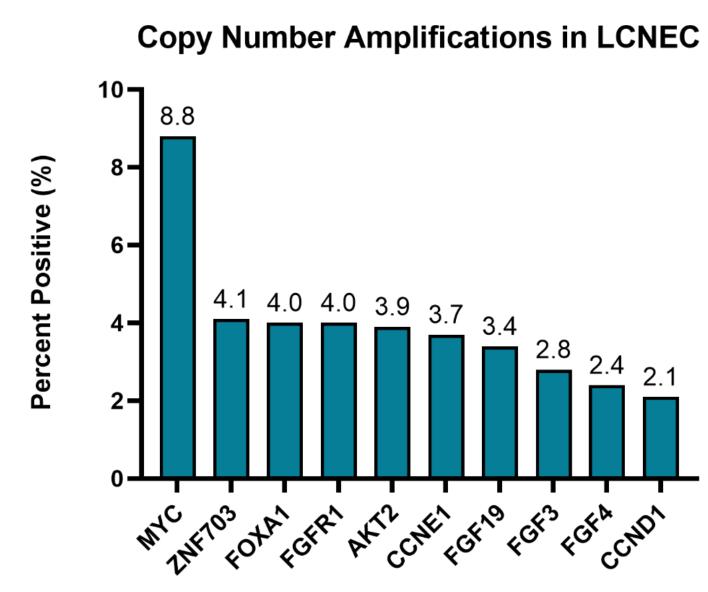

- * LCNEC Cohort excludes cases with indeterminant results
- ** See reference for LCNEC subtype definitions (Rekhtman et al. CCR 2016)

Table 2. Actionable genomic alterations, TMB, and PD-L1 expression in LCNEC

Mutations (types, %)	EGFR exon 19 del *	0.48%
	EGFR L858R*	0.48%
	ALK fusion*	1.7%
	KRAS G12C	2.9%
	RET fusion	Not detected
	NTRK fusion	Not detected
	BRAF V600E	Not detected
	MET exon 14 skipping	2.4%
High TMB**	40.6%	
PD-L1 positivity	21.5%	
	<u> </u>	

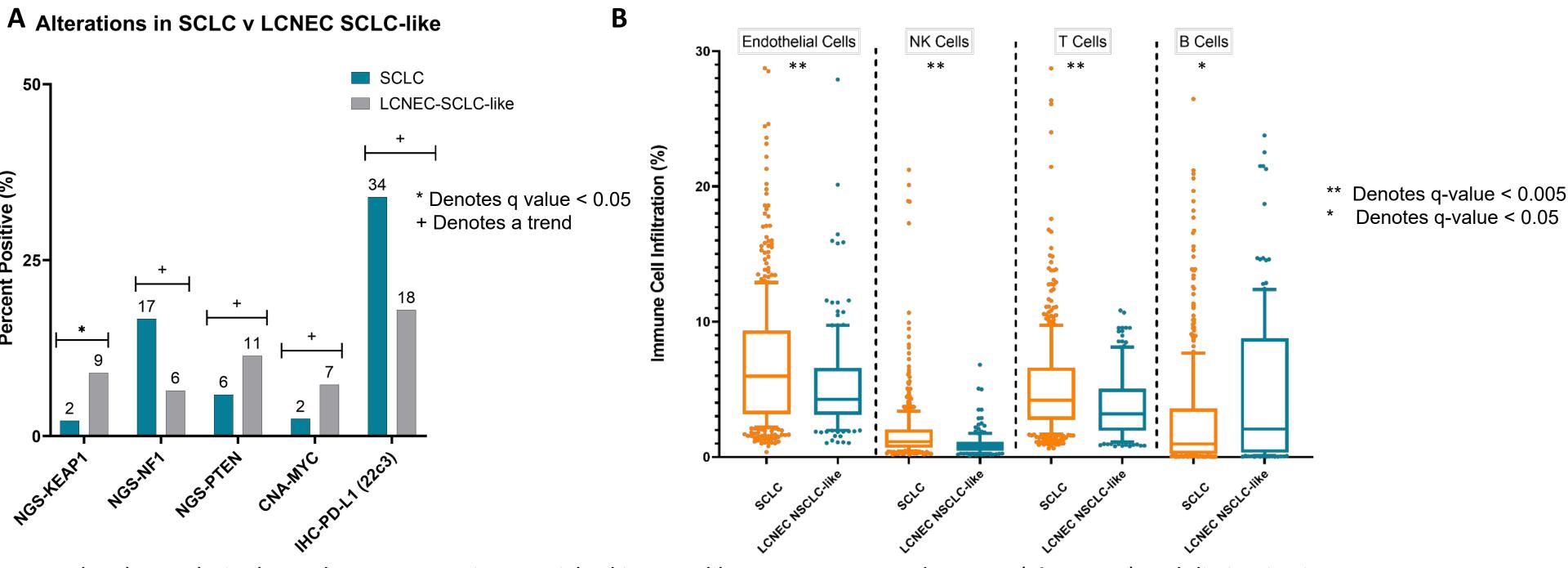
- * Actionable mutations exclusive to NSCLC-like LCNEC
- ** Defined as ≥ 10 Mut/MB


Figure 2. NSCLC-like LCNEC vs. SCLC-like LCNEC



- * Denotes q value < 0.05; + Denotes a trend
- Compared with SCLC-like LCNEC, mutations in *KRAS*, *STK11*, *SMARCA4*, and *CDKN2A* were more common in NSCLC-like LCNEC (**Figure 2**).

Results


Figure 1. Gene mutations (A) and copy number aberrations (B) in LCNEC

- Alterations described in SCLC and NSCLC were observed in LCNEC with the most common alterations being TP53/RB1 mutations (Figure 1A).
- CNA analysis notable for amplifications of cell-cycle genes, and genes in the AKT/mTOR pathway and the FGF signaling pathway (Figure 1B).

Figure 3. Comparison of SCLC vs. SCLC-like LCNEC (A) and evaluation of transcriptome-based immunologic profiles of SCLC vs. NSCLC-like LCNEC

- Molecular analysis showed *KEAP1* mutations enriched in SCLC-like LCNEC compared to SCLC (**Figure 3A**) and distinctive immune gene signatures in LCNEC compared with SCLC (**Figure 3B**).
- Upon re-examination of the data, SFLN11:SFLN12 fusion events in SCLC we reported in the abstract were likely due to an analytical error.

Conclusions

- LCNEC and SCLC share molecular features, but distinct patterns of genomic alterations and transcriptomic profiles were demonstrated.
- These findings present opportunities for therapeutic targeting and inform a future framework for development of therapeutics for LCNEC.

Future Directions

- Comparison of transcriptomic features between LCNEC and SCLC (SCLC-A, N, Y, P).
- Understand treatment outcomes of LCNEC and predictors of response to various treatments including immunotherapy.

