Keck School of Medicine of USC

Comprehensive characterization of neurotransmitters and neuronal signaling (NT) pathway alterations in colorectal cancer (CRC)

Francesca Battaglin¹, Joanne Xiu², Jia Zeng², Yasmine Baca², Priya Jayachandran¹, Krutika Deshpande³, Richard M. Goldberg⁴, A. Craig Lockhart⁵, Jimmy Hwang⁶, Andreas Seeber⁷, Wu Zhang¹, Shannon M. Mumenthaler⁸, Anthony F. Shields⁹, John L. Marshall¹⁰, W. Michael Korn², Josh Neman³, Heinz-Josef Lenz¹

1. USC Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA; 2. Caris Life Sciences, Phoenix, AZ; 3. Departments of Neurological Surgery, Physiology & Neuroscience, USC Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA; 4. West Virginia University Cancer Institute, Morgantown, WV; 5. University of Miami/Sylvester Comprehensive Cancer Institute, Carolinas HealthCare System, Charlotte, NC; 7. Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Innsbruck, Medical University, Innsbruck, Austria; 8. Lawrence J. Ellison Institute for Transformative Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA; 9. Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI; 10. Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.

Introduction

- Strong evidence supports the critical role of the gut-brain axis in modulating the gastrointestinal (GI) tract function and homeostasis.
- and neurotransmitters signaling have been shown to play a role in several GI activating uncontrolled proliferation and cancer types, dissemination
- In addition, neurotransmitters can affect endothelial cells and immune cells in the tumor microenvironment to promote tumor progression.
- Original data from Lenz lab show that single nucleotide polymorphisms in the dopamine pathways are associated with outcome in mCRC patients receiving first-line treatmen
- However, a comprehensive evaluation of the incidence of alterations in these genes/signaling pathways and a molecular characterization of tumors harboring those alterations is lacking.
- Here we evaluated the distribution and molecular context of NT pathway alterations in CRC.

Methods

- A total of 7,595 CRC tumors tested at Caris Life Sciences (Phoenix, AZ) with NextGen Sequencing on DNA (Next Seq, 592 genes or NovaSeq, WES) and RNA (NovaSeq, WTS) were analyzed.
- ssGSEA (single-sample gene set enrichment analysis) was used to calculate pathway enrichment scores (ES) of 7 NT gene sets [GABA, nicotinic, muscarinic, dopamine (DA), reelin, glial cell line-derived neurotrophic factor and neurotrophins].
- X² and Fisher-Exact were used for comparison and significance was determined as *P*-value adjusted for multiple comparison of (Q) < 0.05.

GABA Pathway	DOPAMINE Pathway	RELN Signaling	MUSCARINIC ACETYLCHOLINE Receptors	NICOTINIC ACETYLCHOLINE Receptors	Glial Cell Line–Derived Neurotrophic Factor signaling	Neurotrophins signaling
GABBR1	DDC	RELN	CHRM1	CHRNA1	GDNF	NGF
GABBR2	MAOB	APOER2	CHRM2	CHRNA2	NRTN	BDNF
GABRA1	COMT	DAB1	CHRM3	CHRNA3	NBN	NTF3
GABRA2	DRD1	DAB2	CHRM4	CHRNA4	PSPN	NTF4
GABRA4	DRD2	LRP8	CHRM5	CHRNA5		DCLK1
GABRA5	DRD3	VLDLR		CHRNA6		NTRK1
GABRA6	DRD4			CHRNB2		NTRK2
GABRB1	DRD5			CHRNB3		NTRK3
GABRB3	TAAR1			CHRNB4		
GABRD2	SLC6A3					
GBARE	SLC18A2					
GABRG1	PPP1R1B					
GBARG2	C14ORF28					
GABRG3						
GABRQ						
GABRR1						
GABRR2						
ABAT						
ALDHA5A1						
GAD1						
GAD2						
SLC6A1						
SLC6A13						
SLC6A11						

Table 1. Enrichment Score (ES) According to Metastatic Sites.

	Dopamine Receptor Genes	GABA receptor Genes	Glial cell Neurotrophic Factor	nACH	mACH	Neurotrophins	RELN
Primary/Local (4286)	1	1	1	1	1	1	1
Abdomen (105)		*	*	*	*		*
Bone (46)							
Brain (58)	*	*	*	*	*	*	*
Connective tissue (47)							
GU (51)							
GYN (72)							
Intestine (134)							
Liver (1522)	*		*	*	*	*	*
Lung (448)	*					*	
Lymph Node (207)						*	
Omentum/Peritoneum (342)	*	*	*	*	*		*
Other (145)			*	*	*		
Ovary (76)	*						
Pelvis (47)			*				
Skin (9)							

* = significantly different after correction for multiple testing

Figure 2. Clustering of Primary Tumors According to ES.

Figure 3. Tumor Characteristics According to Enrichment Cluster.

		Cluster High	Cluster Lov
	Average Age	61.1	61.6
Gondor	Female	738	1069
Gender	Male	984	1386
	Left	623	836
	Rectal	361	653
Sidedness	Right	551	703
	Transverse	108	131
	unclear	79	132
	CMS1	228	420
CMS	CMS2	463	761
	CMS3	240	539
	CMS4	791	735

- ES based on sample sites showed a substantial heterogeneity in NT enrichment.
- cluster (32 vs 29%, *P* = 0.02 and 46 vs 30%, *P* < 0.001, respectively).
- genes (all Q < 0.05).

Results

Summary

• Notably, when compared to primary tumors, all 7 gene sets were significantly enriched in brain metastases (mets; ES ratio 1.14-1.55), while abdomen, liver, and peritoneal mets displayed significant decreases in most NT gene sets. DA was enriched in ovarian and lung mets (ES ratio: 1.18 and 1.09, respectively), the latter also showing increased neurotrophins ES (1.06) (all Q < 0.05). • When investigating primary tumors grouped according to overall ES by unsupervised clustering, right-sided and CMS4 CRCs were more prevalent in the high ES cluster compared to the low ES

Tumors in the high ES cluster showed lower prevalence of TMB-H (≥ 10mt/MB) (7 vs 10%), MSI-H (6 vs 10%) and PD-L1 (2 vs 6%), while higher copy number alterations (CAN) rates were noted in 9

High ES tumors showed significant positive associations with microenvironment infiltration of B cells, T cells (NK, CD4+ and CD8+ T cells, but not Treg), M2 Macrophages, Myeloid Dendritic Cell, Neutrophils, and an inverse association with M1 Macrophages, regardless of MSI status (Q < 0.05).

Figure 4. Molecular Characteristics According to Enrichment Cluster.

Figure 5. Immune Cell Infiltration According to Enrichment Cluster

All effects remains significant after multiple correction.

- investigate NT signaling pathway alterations in CRC.

Conclusions

• This is the first and most extensive molecular profiling study to

• Our data show a distinct distribution of pathway enrichment according to metastatic site, distinct molecular features in high vs low ES clusters in primary tumors (including CMS subtypes, TMB, MSI and PD-L1 rates), and differential immune cell infiltration.

• These findings support the role of NT signaling in the metastatic spread of CRC and modulation of tumor immune microenvironment.