

Tumor profiling on 1245 gliomas and paired tumor study on 19 high grade gliomas

¹Joanne Xiu, ¹David Spetzler, ¹Ryan Bender, ¹Anatole Ghazalpour, ¹Zoran Gatalica, ¹Sandeep K. Reddy, ²David Piccioni, ³Jethro Hu, ⁴Michael J. Glantz, ²Santosh Kesari; ¹Caris Life Sciences, Phoenix, AZ; ²UCSD Moores Cancer Center, San Diego, CA; ⁴Penn State - Milton S Hershey Medical Center, Hinsdale, MA

Abstract #2058

Background: Gliomas are molecularly heterogeneous with genetic alterations driving the growth of recurrences different from the initial tumor. Previous reports showed molecular changes during progression of lower grade gliomas to GBM, driving tumor growth and treatment resistance; however changes during progression of high-grade gliomas have not been systematically reported.

Methods: 1245 glioma tumors (934 GBM) were tested with multiple platforms including sequencing (SEQ), immunohistochemistry (IHC), fluorescent/chromogenic in-situ hybridization (FISH/CISH), fragment analysis (FA) and promoter methylation (Me) assay. Metachronous paired tumors from 19 patients (pts) were assessed for biomarker changes over time.

Results: EGFRvIII was seen exclusively in GBM (16% of GBM) while amplification was more common in GBM than grade II-III tumors (56% vs. 20%, p < 0.001). MGMT Me was seen in 47% of all, and was more common in grade II-III (64% vs. 42%, p < 0.001). PD-L1 expression on tumor cells was seen in 27% and was more common in tumors without MGMT Me (36% vs. 18%, p = 0.01). PD-1 expression on tumor-infiltrating lymphocytes was seen in 48% and was higher in GBM than grade II-III(54% vs. 30%, p = 0.005). 38 of 48 sequenced genes had mutations, including BRCA1 (8%) and BRCA2 (6%). 1p19q co-deletion was seen in 26% of grade II-III and 2.9% of GBM. Paired tumors from 19 pts (18 GBM and 1 grade III in both samples) taken at an average of 469 days apart (91-1400) showed that 17 pairs (89%) had one or more biomarker changes over time. 3 of 13 (23%) pairs lost MGMT Me, potentially indicating acquired resistance to temozolomide. EGFR aberrations including amplification (N = 1), mutations on the extracellular (EGFRvIII, N = 1) and intracellular domains (T790M, N = 1; Exon 20 insertion N = 1) were acquired in 3 pairs. One pt, presenting with a PTEN mutation, acquired three additional mutations: cKIT (E583K), PTPN11 (A72T) and PIK3CA (D434N). **Conclusions:** Multiplatform tumor profiling on a large cohort of gliomas confirms tumor heterogeneity. Changes in MGMT Me and EGFR of potential therapeutic importance are frequently observed in high grade gliomas at the time of recurrence, suggesting the need for a re-biopsy for tumor profiling to direct the next line of therapy.

Results

Table 1: Patient characteristics

	Patient N	Average Age (range)	Gender
Glioma	1245	54.4 (21-91)	Female 41%; Male 59%
Grade IV	934	57.1 (21-91)	Female 40%; Male 60%
Grade III	155	47.3 (21-81)	Female 40%; Male 60%
Grade II	99	42.7 (21-76)	Female 44%; Male 56%
Glioma, Not Otherwise Specificied	57	49.7 (23-84)	Female 47%; Male 53%

Table 2: Biomarker aberration frequency in glioma and associated therapies

Testing platform - biomarker	Positive N	Total N	Biomarker Frequency	Associated therapies	Therapy status	
Pyro SEQ-MGMT	294	625	47.00%		Standard-of-care	
SEQ-IDH1	129	559	23.10%	lemozolomide		
FA-EGFRvIII	29	262	11.10%		Clinical trials	
ISH-EGFR	180	358	50.30%			
IHC-EGFR	154	213	72.30%	EGFR-largeted therapies		
SEQ-EGFR	36	577	6.20%			
IHC-TOPO1	539	1015	53.00%	Irinotecan	Standard-of-care	
FISH 1p19q	9	97	9.30%	PCV combination therapy	Standard-of-care	
IHC-PD-1	94	194	48.50%		Clinical trials	
IHC-PD-L1	53	193	27.50%	Nivolumab, pembrolizumab		
SEQ-BRCA1	11	143	7.70%			
SEQ-BRCA2	8	143	5.60%	Olaparib	Clinical trials	
SEQ-ATM	22	547	4.00%	cisplatin, carboplatin	stand-of-care	
Low IHC-ERCC1	179	479	62.60%			
IHC-TOP2A	385	929	41.44%	Doxorubicin	Clinical trials	
Low IHC-TS	333	976	65.90%	Pemetrexed, fluorouracil	Clinical trials	
Low IHC-TUBB3	427	545	21.70%	Docetaxel, paclitaxel,		
IHC-TLE3	250	699	35.80%	cabazitaxel	Cliffical trials	
Low IHC-PTEN	926	1118	17.20%			
SEQ-PTEN	59	517	11.40%	Everelimus tempiralimus	Clinical trials	
SEQ-PIK3CA	51	674	7.60%	Everonnus, temsironnus		
SEQ-AKT1	2	556	0.40%			
IHC-cMET	11	751	1.50%	INIC280 crizatinih	Clinical trials	
SEQ-cMET	17	557	3.10%	INC280, CH20timb	Clinical trials	
SEQ-BRAF	25	760	3.30%	Vemurafenib, dabrafenib	Clinical trials	
SEQ-KRAS	13	704	1.80%		Clinical trials	
SEQ-NRAS	4	623	0.60%	NAEK inhibitors		
SEQ-GNAQ	1	353	0.30%			
SEQ-HRAS	1	428	0.20%			
SEQ-VHL	2	483	0.40%	Bevacizumab	Standard-of-care	
SEQ-RET	5	543	0.90%	Vandetinib, cabozantinib	Clinical trials	
SEQ-SMO	2	460	0.40%	SMO inhibitors	Clinical trials	
SEQ-CKIT	10	640	1.60%			
SEQ-ABL1	7	527	1.30%	Multikinase inhibitors	Clinical trials	
SEQ-PDGFRA	5	548	0.90%			
SEQ-RB1	10	549	1.80%	CDK inhibitors	Clinical trials	

Results

Figure 1: Differential biomarker features tested by promoter methylation, fragment analysis, in-situ hybridization and IHC (A) and by sequencing (B) in glioblastoma and grade II-III gliomas. Asterisks indicate the markers that are statistically significantly different in GBM and grade II-III gliomas. P-values in bold indicate comparisons that remain statistically significant after correction for multiple comparisons.

 Table 3: Differential biomarker characteristics
in IDH1-mutated and IDH1-wild type patient **cohorts**. (Asterisks indicate comparisons that remain statistically significant after correction for multiple comparisons.)

	All gliomas				
	IDH1 MT	IDH1 WT	RR	p value	
	N/Total (%)	N/Total (%)	[95% CI]		
MGMT	97/117	150 /403	5.36	<0.0001*	
Methylation	(83%)	(37%)	(2.42-8.40)		
TP53 mutation	88/126	113/425	4.03	<0.0001*	
	(70%)	(27%)	(2.87-5.66)		
EGFR vIII	0/62	28/186	0	<0.0001*	
	(0%)	(15%)			
PTEN mutation	2/122	57/401	0.13	<0.0001*	
	(1.6%)	(14%)	(0.03-0.52)		
BRAF mutation	0/127	16/436	0	0.0292	
	(0%)	(3.7%)			
EGFR mutation	1/126	34/428	0.12	0.0015*	
	(0.8%)	(7.9%)	(0.02-0.8)		
1p19q co-	7/22	2/68	4.2	0.0006*	
deletion	(32%)	(2.9%)	(2.36-7.46)		

0-5% 5.1-10% 10.1-20% 20.1-50% 50.1-75%

Grade II-III Grade IV (GBM)

Figure 2: Venn diagram made from 234 glioma cases with IDH1, TP53, MGMT methylation and **EGFRvIII evaluated**. 160 cases showed at least one aberration.

Results

Figure 3: Comparison of biomarker profiles on paired tumor samples (N=19). Biomarkers that changed and did not change over time are shown.

	Patien
ĺ	MGMT-meth
	EGFR v
	EGFR IS
	1p19q FI
	EGFR muta
	PTPN11 mu
Ī	IDH2 muta
Ī	c-KIT muta
ľ	PIK3CA mut
ĺ	AR IHO
	PR IHC
	MGMTI
	TS IHC
	TOP2A I
ľ	TOPO1 I
ľ	ERCC1 II
ľ	PTEN IF
	SPARC II
ľ	TLE3 IH
	RRM1 II
	PGP IH
	EGFR IF

Details of tumor mutational status changes: Patient a: Acquisition of EGFR D770_N771insN; Patient b: Acquisition of IDH2 P167L; Patient d: Acquisition of EGFRT790M; Patient e: Acquisition of cKIT (E583K), PTPN11 (A72T) and PIK3CA (D434N); with a concurrent increase of MGMT methylation level ($7\% \rightarrow 54\%$)

Conclusions

- therapy.

References

Well-recognized biomarkers in glioma, including MGMT promoter methylation, IDH1 mutation and 1p19q co-deletion are systematically studied in a large cohort of clinical glioma tumors. In addition, promising novel therapeutic targets, including EGFRvIII, PD1/PDL1 and BRCA1/2 are investigated and the aberration frequency is reported. . While standard chemotherapy options are limited for patients with gliomas, our data is of importance for both clinical consideration and for clinical trial design.

Distinct biomarker profiles observed in grade II-III glioma tumors and GBM, as well in IDH1-WT and IDH1-MT tumors may underlie the distinct clinical behavior of these groups and provide biological evidence to treat these cancers differently.

Frequent biomarker changes over time, especially those that carry important therapeutic implications, suggest the need for a re-biopsy for tumor profiling to direct the next line of

Sampson, J.H., et al., Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII*expressing tumor cells in patients with glioblastoma.* Neuro Oncol, 2011. **13**(3): p. 324-33.

Verhaak, R.G., et al., Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in *PDGFRA, IDH1, EGFR, and NF1.* Cancer Cell, 2010. **17**(1): p. 98-110.

Brennan, C.W., et al., *The somatic genomic landscape of glioblastoma*. Cell, 2013. **155**(2): p. 462-77.