Comprehensive multiplatform biomarker analysis of 313 hepatocellular carcinomas identifies potential novel therapeutic options

Ghassan Abou-Alfa, MD, John T. Miura, MD, Clark Gamblin,
MD, MS, Ruth He, MD, PhD, Joanne Xiu, PhD, Sherri Z.
Millis, MS, PhD, Zoran Gatalica, MD, DSc, Sandeep K.
Reddy, MD, Celina Ang, MD, Nelson S. Yee, MD, PhD

Society of Surgical Oncology Annual Meeting 2015 3/27/2015

Disclosures

- Support for this study was provided by Caris Life Sciences
- **Celina Ang**: Advisory board Bayer/Onyx, Caris Life Sciences; Travel support – Caris Life Sciences
- Ghassan Abou-Alfa: Consulting: Abbott Laboratories, Amgen, Bayer, Clovis, Eli Lilly and Company/Imclone, Exelixis, Genentech, Immunomedics Incyte, Momenta Pharmaceuticals, Myriad Genetics, Novartis, OncoMed Pharmaceuticals, Polaris Pharmaceuticals, Roche, Sanofi -Aventis, Vicus Therapeutics; Research Grants Support: Aduro Biotech, Astellas Pharma US, Celgene, Celgene Celsion, Cipla, Eli Lilly and Company, Exelixis, IntegraGen, Jennerex Biotherapeutics, MedImmune, Novartis, Pharmacyclics, Sanofi-Aventis, Silenseed, Vicus Therapeutics

Disclosures

- John T Miura: none
- Ruth He: none
- Joanne Xiu: employee of Caris Life Sciences
- Sherri Z Millis: employee of Caris Life Sciences
- Zoran Gatalica: employee of Caris Life Sciences
- Sandeep Reddy: employee of Caris Life Sciences
- Nelson Yee: none

Therapy for Advanced Hepatocellular Carcinoma

- Sorafenib is the only active agent
- Multiple negative trials
- No predictive biomarkers
- Rationale for molecular profiling
 - Identify therapeutic targets
 - Predict therapeutic response
 - Risk stratification and prognosis

Negative phase III trials in HCC						
Agent	Trial/Setting					
Sorafenib	STORM – vs placebo, adjuvant					
Sunitinib	vs sorafenib, 1st line					
Erlotinib + sorafenib	SEARCH – vs sorafenib, 1st line					
Linifanib	vs sorafenib, 1st line					
Brivanib	BRISK-FL – vs sorafenib, 1st line					
	BRISK-PS – vs placebo, 2nd line					
Everolimus	EVOLVE – vs placebo, 2nd line					
Ramucirumab	REACH – vs placebo, 2nd line					

Study Design and Objective

- **Design:** Retrospective review of HCC molecular profiling data generated by multiplatform analysis
- Objective: To describe molecular patterns and associations, and potential novel therapeutic targets in HCC

Methods

- Formalin-fixed paraffin-embedded samples
- Multiplatform profiling at CLIA certified lab
- Specimens reviewed by board-certified pathologists
- Immunohistochemistry (IHC)
 - 21 protein panel
 - Slides stained using automated system (Ventana Medical Systems, Tucson, AZ) as per manufacturer's protocol with proprietary reagents
 - IHC stained slides scored by pathologists
 - Tumor staining scored for all markers except PD-1 which was scored in tumor infiltrating lymphocytes
 - Standard thresholds specific to each antibody

Methods (cont.)

- Fluorescence/chromogenic *in situ* hybridization (FISH/CISH)
 - Detect gene amplifications
 - Standard scoring systems applied
- DNA sequencing (Next generation sequencing or Sanger sequencing)
 - 47 genes
 - NGS using Illumina MiSeq platform (Illumina TruSeq Amplicon Cancer Hotspot panel)
 - Sequencing plots read by board-certified geneticists

Results

Specimens

- 313 individual patient specimens
- Heterogeneous
- Median age 61 years (18-87 years)
- Male:female ratio = 2.7:1
- Metastases in 36% of subjects

Changes in gene copy number by FISH or CISH

Protein expression by IHC

Percentage of samples with change in protein expression, by IHC										
High expression levels				Low expression levels						
EGFR	TOPO1	PD-1	TOP2A	SPARC	cMET	RRM1	TS	PTEN	MGMT	
58	52	52	36	35	25	82	80	66	32	

Protein expression in primary and metastatic tumors

- Significantly higher numbers of PD-1+ tumor infiltrating lymphocytes in metastatic lesions (p = 0.0128)
- Low TS (thymidylate synthase) significantly more frequent in primary tumor (p = 0.0004)
 - Low TS associated with sensitivity to fluoropyrimidines

Incidence of gene mutations

Co-incidence of gene alterations and changes in protein expression by CTNNB1 mutation status

Co-incidence of gene alterations and changes in protein expression by TP53 mutation status

Actionable Targets

- EGFR
- PI3K/Akt/mTOR ·
- PD-1
- Wnt
- C-Met
- BRCA2

SEARCH (sorafenib + erlotinib)

Conclusions

- Novel therapeutic targets and potential combinations identified
- Findings supported by existing literature
- Needs clinical validation

Acknowledgements

- Co-authors
- Sherri Millis, MS, PhD
- Patients

• Celina.ang@mssm.edu