

PI3K/PTEN/Akt/mTOR pathway aberrations and co-incidence of hormone receptors and HER2 in 19,784 diverse solid tumors

Sherri Z. Millis¹, Sadakatsu Ikeda², David Arguello¹, Rebecca Feldman¹, Joanne Xiu¹, Todd Maney¹, Sandeep Reddy¹, and Razelle Kurzrock² ¹Caris Life Sciences, Phoenix, AZ; ²Center for Personalized Cancer Therapy, UC San Diego - Moores Cancer Center, La Jolla, CA

Abstract

Background: Molecular aberrations in the phosphatidylinositol 3-kinase (PI3K) pathway have been documented across cancers, especially PIK3CA mutations and mutation or loss of PTEN. These alterations may be relevant to therapies targeting the PI3K/PTEN/Akt/mTOR signaling pathway.

Methods: Molecular profiling was performed on 19,784 tumors (>40 cancer types) at a CLIA-certified laboratory. Tests included next generation sequencing (NGS), protein expression (immunohistochemistry), and gene amplification (FISH or CISH).

Coverage								
Gene	Amino Acids Covered							
РІКЗСА	75-118, 336-353, 418-555, 692-729, 979-1068							
PTEN	1-27, 165-267, 280-342							
AKT1	16-47							

Results: Frequency and type of *PIK3CA, AKT1* and *PTEN* mutations were collated across cancers. Aggregate gene mutation rates (47 genes), protein expression rates (18 proteins), and copy number (5 biomarkers) were measured. Comparison of frequencies and correlations across cancers identified lineage-specific differences, and co-incidences of associated biomarkers, which will be described. Of note, endometrial, breast, cervical, anal squamous cell, and bladder cancers had the highest *PIK3CA* mutation rate (37%, n=1600; 31%, n=2282; 29%, n=284; 28%, n=67, 22%, n=303, respectively). Patterns in AKT1 and PTEN mutation rates differed by cancer, as did PTEN loss - hepatocellular, 57%, prostate, 52%, and endometrial 50% loss. Co-mutation of PTEN and PIK3CA occurred in 1.5% of breast, 0% of prostate, and 12% of endometrial cancers. Of interest, PIK3CA mutations and PTEN loss cooccurred frequently, e.g. 31% of *PIK3CA* mutated patients also have a PTEN loss.

PIK3CA mutations across cancers were distributed 43% in exon 9, 33% in exon 20, and 24% in other exons. Distribution of *PIK3CA* mutations by cancer type varied and occurred more frequently in the presence of HER2 protein expression or copy number increase (p=0.0001) and more frequently in the presence of hormone receptor overexpression (androgen receptor (AR), progesterone receptor (PR), and estrogen receptor (ER)) (p=0.0335). PTEN loss was seen in 27% of patients with and 30% without HER2 overexpression or amplification (p=0.004).

Conclusions: Patterns of biomarker co-alterations across cancers may provide new insights relevant to targeted therapy and may be crucial to optimizing combination treatments.

Co-Incidence of Biomarker Aberrations in the presence or absence of PIK3CA or PTEN Mutations

Table 1. A. Aggregate differences in gene mutation rates, protein expression rates, and copy number were measured and are shown between PIK3CA WT and PIK3CA MT patients and between PTEN WT and PTEN MT cases. **B.** Total mutations identified out of total cases tested, each, for PIK3CA or PTEN.

А.	Next Gen Seq, % Mutated												IHC, % Protein Expression above threshold, unless noted									ISH	
Biomarker	TP53	BRAF	KRAS	HRAS	FBXW7	FGFR2	HNF1A	ATM	CTNNB1	ERBB2	PTEN	PIK3CA	PTEN loss	TOP2A	AR	ER	PR	MGMT	PGP	TS	HER2	HER2	cMET
PIK3CA WT	49	3.8	16	0.5	2	1	1	3	2	1	5	n/a	29	73	16	23	13	58	17	49	6	3.5	1.4
PIK3CA MT	35	2.1	21	1.0	6	3	2#	4	7	2	16	n/a	31	86	29	44	33	54	12	52	11	6.4	0.2
PTEN WT	47	3.6	17	0.5	2	1	1	3	2	1	n/a	12	74	73	18	24	14	58	17	49	7	4.1	1.3
PTEN MT	34	4.1#	19 [#]	0.4#	6	7	5	5	12	2	n/a	33	27	84	23	49	42	42	10	60	4	0.9	0.2
All differences are significant (p value<0.05), unless indicated B. PIK3CA PTEN																							
with a #	a #. MT/Total 2548/19784											110	1108/18885										
									% Total					13		5.9%							

Figure 1. Percent PIK3CA, *PTEN*, AKT1 mutation and PTEN loss were compared across cancers. Total cases by lineage are indicated in parentheses. Total cases tested=19784. CNS-other =neuroblastoma, medulloblastoma, ependymoma, ganglioglioma; Head and neck cancers – Other= hypopharynx, nasopharynx, oropharynx

PIK3CA, PTEN, AKT1 Mutation and PTEN Loss by Lineage

Frequency of *PIK3CA*, *AKT1*, and *PTEN* mutations or PTEN loss in presence/absence of hormone receptors or HER2 Figure 2.

Incidence of any PI3K/AKT1/mTOR pathway aberrations, by lineage Figure 3.

He
Extr Esophageal Non E
Head and neck cancers - Other (hypo
Ova
CNS-other (neuroblastoma, medulloblas
Gas

UC San Diego **MOORES CANCER CENTER**

PIK3CA Mutations by Exon and Lineage

Figure 4. Distribution of PIK3CA mutations in helical, kinase, or other regions differ by subtype. All non-exon 9 or 20 mutations are grouped as 'Other'.

Conclusions

- helical domain.
- aberration is 39%.
- aberration
- overcome resistance pathways.

References

- Ther; 13(5) 2014

• 13.2% (2548/19356) of patients with diverse cancers have PIK3CA mutations; 33% of these mutations are found in the kinase domain and 43% in the

5.9% of tumors (1108/18885) have PTEN mutations; 30% (5510/18366) have PTEN loss. The total number of patients with any PI3K/AKT/mTOR pathway

Multiple aberrations, including but not limited to mutations in KRAS, BRAF, CTNNB1, TP53, and APC or altered expression of TS, MGMT, HER2, and hormone receptors may co-exist with PIK3CA or PTEN anomalies. PIK3CA mutation, PTEN mutation and PTEN loss are found in an important subset of multiple tumor types and may be targeted by inhibitors. Optimization of the drug used may require determining the specific types of aberration seen, e.g., helical versus kinase domain (PIK3CA) versus PTEN

Since multiple anomalies may co-exist with PIK3CA or PTEN alterations, patients may require customized combinations of targeted agents to

Dienstmann, R, et al. (2014) "Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway ihibitors." Mol Cancer

Janku, F et al. (2014) "Assessing PIK3CA and PTEN in early-phase trials with PI3K/AKT/mTOR inhibitors". Cell Reports; 6, 2014