

Molecular profiling identifies genetic heterogeneity in synchronous and asynchronous breast cancers

Windy M. Dean-Colomb¹, Clayton Yates, PhD², Zoran Gatalica, MD³, DSc, Sandeep Reddy, MD³, Joyce O'Shaughnessy, MD⁴, Sherri Z. Millis, PhD³

¹Lafayette General Health, Louisiana State University School of Medicine, LA; ²Tuskegee University, AL; ³Caris Life Sciences, Phoenix, AZ;

⁴Baylor Sammons Cancer Center, Texas Oncology, TX

Abstract

Background: Histologic heterogeneity of tumors is well documented; however, the molecular heterogeneity is not well understood, especially relative to driver mutations within clonal populations and their prognostic and predictive value.

Methods: Molecular profiling of breast cancers (BCs) at a single institution were analyzed for differences in clonal populations within the same breast, bilateral synchronous BCs, and/or within primary and paired locally recurrent or metastatic tumors. Gene alterations (GAs) were identified by next generation sequencing (NGS). GAs were compared in 9 synchronous BCs and 48 primary/recurrent paired BCs. Estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), were evaluated by immunohistochemistry (IHC). HER2 was evaluated by IHC and in situ hybridization (ISH).

Results: We identified GAs in 10 of 56 cases (18%); 2 were bilateral and 8 were paired primary/recurrent BCs. The 10 cases included 1 pair of separate primaries, 2 primary/locally recurrent, 2 primary/metastatic pairs, 3 metastatic pairs and 2 locally recurrent pairs. In the entire cohort, ER, PR, and HER2 status differed in 9 cases (16%), while AR status differed only in 4 (7%). 23% (13/56) were negative for ER, PR, and HER2 (triple negative [TN]); of 7 TN BCs with GAs in BCs, 6 of 7 (86%) were TN on both samples in the pair. TP53 GAs were identified in 5 of the 10 cases (including the 2 synchronous), PIK3CA GAs were identified in 3 (1 synchronous), and PTEN GAs were identified in 4 (1 synchronous) cases. Other genes in which GAs appeared in only one of the pairs included CDH1 (synchronous), cMET (asynchronous metastatic pair) and KRAS (primary/recurrent pair). Of the 2 synchronous cases, 1 had 2 and 1 had 3 different GAs in the bilateral BCs.

Conclusions: We identified that common GAs differ in both synchronous primary BCs and in paired primary/metastatic tissues. Such discordance could influence treatment recommendations. These findings highlight the molecular evolution of BC and the importance of evaluating predictive markers of treatment benefit both in synchronous and metastatic BCs.

Patient ER, PR, HER2, AR status and profile type

Figure 1. Distribution of cases by ER, PR, HER2 status

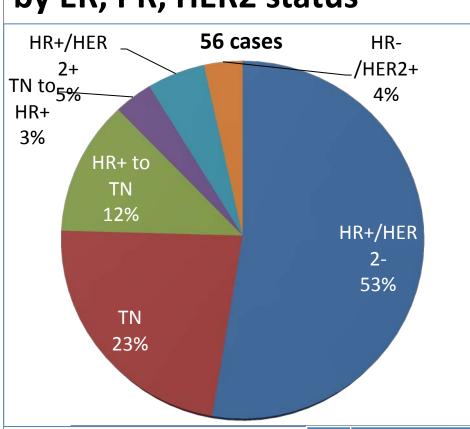


Table 1. Timing of profile and associated AR status by ER, PR, HER2 status. HR = hormone receptor

	# cases	Synchronous Cases	Cases with AR change*	Change in Gene Alterations		
HR+/HER2-	29	7	4	3 (1 synch)		
TNBC	13	0	0	6		
HR+ to TN	7	1	0	1 (synch)		
TN to HR+	2	0	0	0		
HR+/HER2+	3	0	0	0		
HR-/HER2+	2	1	0	0		
	*9 samples did not have AP tosted					

*8 samples did not have AR tested

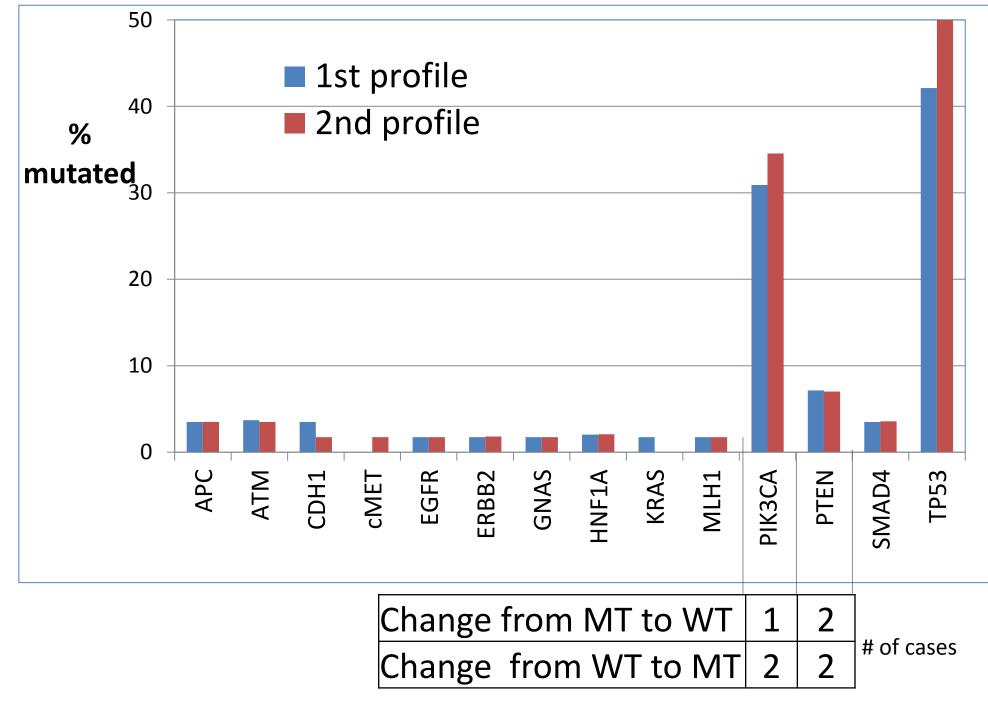
Table 3. Association of ER/PR changes with AR change

NC = no change ↑= HR goes from negative to positive ↓= HR goes from positive to negative

HR = hormone receptor

••	ER/PR	AR	# of cases
	\uparrow	↑	0
	\uparrow	NC	2
	\uparrow	\downarrow	0
	NC	\uparrow	3
	NC	NC	35
5	NC	\downarrow	1
	\downarrow	\uparrow	0
9	\downarrow	NC	7
	\downarrow	\downarrow	0
_			

Not all cases had all three markers tested


Table 2. Details
of changes in
mutation and
PTEN IHC
Information list
by case, includ

Information listed by case, including site of specimen profiled, time between specimen collections, and other associated information.

*HR = Hormone receptor
Pna = Specimen collected
post neoadjuvant therapy

	#	Subtype and AR status*	Specimen site	Specimen notes*	apart (days)		mutations with changes	mutations with changes	Other mutations with changes	mutations but no change	protein status IHC	
	1	HR+/HER2-; AR- HR+/HER2-; AR+		Metastatic Metastatic	245	WT R249S, exon 7	-	-	-	PIK3CA	Both positive	
_	2	TN; AR-	Breast, left Chest wall	Primary; pna Local recurrence	338	WT R175H, exon 5	- -	-	- -	- -	Both negative	
ed g	2	HR+/HER2-; AR+	Breast, left	Local recurrence from left breast	0	WT	E545G, exon 9	-	-	-	Positive	
		TN; AR+	Breast, right	Local recurrence, from left breast or new primary	0	V173fs, exon 5	WT	-	-	-	Negative	
	4	HR+/HER2-; AR+	Breast, right	Primary	0	WT	-	T319fs, exon 8	CDH1,c.1134_1137 +17 del exon 8	BRCA1, EGFR	Negative	
		HR+/HER2-; AR-	Breast, left	Synchronous primary		R282W, exon 8	-	WT	WT		Positive	
	5	TN; AR-	Skin	Metastatic	174	WT	-	-	-	ATM	Both positive	•
	_	TN; AR-	Peritoneum	Metastatic		Q100X, exon 5	-	-	-			
d /		TN; AR+	Breast, left	Primary; pna	-0.4	-	WT	WT	-	TP53	5	
	6	TN; AR+	Breast, left	Axillary tail; local recurrence	504	-	E542K, exon 9	T319fs	-		Both positive	•
	7	TN; AR-	Breast, left	Local recurrence, left breast	252	-	WT	L182V	-	TP53	Both positive	
	,	TN; AR-	Breast, left	Local recurrence, left breast	232	-	C420R, exon 7	WT	-		Both positive	F
		TN; AR-	Breast, left	Primary		-	-	WT	-	TP53	Positive	1
	8	TN; AR-	Lymph node	Left neck dissection	491	-	-	C304fs, exon 8	-		Negative	+
	9	HR+/HER2-; AR+	Ovary	Metastatic	595	-	-	-	WT	S, PIK3CA Bo	Both positive	2
	3	HR+/HER2-; AR+	Liver	Metastatic	333	-	-	-	cMET, T1010I, VUS, exon 14		Both positive	3
1		TN; AR-	Breast, left	Primary	100	-	-	-	KRAS, G13D	TDE2 DDC42	Positive	
	10	TN; AR-	Soft Tissue	Metastatic	106	-	-	-	WT	TP53, BRCA2	Negative	

Figure 2. Frequency of mutations. Shown by gene for paired samples.

Conclusions

- Common GAs differ in both synchronous primary BCs and in paired primary/metastatic tissues and could influence treatment recommendations.
- These findings highlight the molecular evolution of BC and the importance of evaluating predictive markers of treatment benefit both in synchronous and metastatic BCs.
- Changes in androgen receptor are not dependent upon estrogen or progesterone changes.

References

- L. Goswami, R, et al. Hotspot mutation panel testing reveals clonal evolution in a study of 265 paired primary and metastatic tumors. *Clinical Cancer Research* (2015) OF1-8.
- 2. Meric-Bernstam, F et al. Concordance of genomic alterations between primary and recurrent breast cancer. *Mol Cancer Ther* (2014) 13(5) 1382-9.
- 3. Millis et al. Predictive biomarker profiling of >6,000 breast cancer patients shows heterogeneity in TNBC, with treatment implications *Clinical Breast Cancer* (2015) in press.