Comprehensive profiling of *MDM2* amplified gastrointestinal (GI) cancers

Keck School of Medicine of USC

Francesca Battaglin¹, Joanne Xiu², Yasmine Baca², Anthony F. Shields³, Richard M. Goldberg⁴, Alberto Puccini¹, Ryuma Tokunaga¹, Hiroyuki Arai¹, Jingyuan Wang¹, Natsuko Kawanishi¹, Andreas Seeber⁵, Igor Astaturov⁶, A. Craig Lockhart⁷, Wu Zhang¹, John L. Marshall⁸, W. Michael Korn², Heinz-Josef Lenz¹

1. Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA; 2. Caris Life Sciences, Phoenix, AZ; 3. Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI; 4. West Virginia University Cancer Institute, Morgantown, WV; 5. Department for Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Innsbruck, Innsbruck, Austria; 6. Fox Chase Cancer Center, Philadelphia, PA; 7. University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL; 8. Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.

Introduction

- The MDM2 proto-oncogene encodes a nuclear localized E3 ubiquitin ligase with the core function of inhibiting the tumor suppressor p53. MDM2 amplification has been reported in multiple tumor types and is a hallmark of tumorigenesis [1].
- In certain tumor types, such as glioblastoma and welldifferentiated liposarcoma, MDM2 amplification and TP53 alterations are mutually exclusive, however, in other tumors (i.e. osteosarcoma, esophageal cancer), MDM2 amplification and TP53 alterations co-occur.
- Notably, preclinical studies have suggested several noncanonical p53-independent roles for MDM2, including a functional angiogenesis effect [2], disruption of the G1/S checkpoint [3], promotion of genomic instability [4], and negative regulation of 7 cell activation through ubiquitin-dependent degradation of NFATc2
- While MDM2 inhibitors are currently in early-phase clinical development, recently MDM2 amplification also has been implicated as a potential marker for accelerated tumor growth after checkpoint inhibitors (ICIs) treatment, a phenomenon known as hyperprogression, affecting approximately 9% of patients who receive PD-1/PD-L1 inhibitors [6, 7].
- Here, we aimed to characterize the molecular and gene expression profile of MDM2 amplified (a-MDM2) GI cancers.

Methods

- 23632 samples: 11692 colorectal, 3830 gastric/esophageal, 3960 pancreatic, 1860 biliary cancers, 2330 other GI, collected between August of 2015 to December of 2019 were included in the analysis
- Samples were analyzed using NextGen DNA seq (Illumina) NextSeq, 592 gene panel) for gene mutations and amplification (copy number > 6) and immunohistochemistry. The Illumina NovaSeq 6500 was used to sequence the whole transcriptome from patients to an average of 30M paired end reads. NGS RNA sequencing captures 22192 exonic regions. For transcription counting, transcripts per million molecules (TPM) was used (Caris Life Sciences, Phoenix, AZ).
- Molecular alterations were compared using Chi-square or Fisher Exact tests and a *P*-value of < 0.05 was considered a trending difference. Due to the large sample size of this study, *P*-values were further corrected for multiple comparison using Benjamini-Hochberg method and an adjusted *P*-value (i.e., *Q*-value) of < 0.05 was considered a significant difference. Continuous variables were compared using Oneway Anova.
- EBseq was used to identify differentially expressed genes based on MDM2 expression levels (above vs below median) with control for false discovery rate (FDR, Q < 0.2).
- Pathway and functional enrichment analysis was performed using Reactome.

References

1. Wade et al. Nat Rev Cancer 2013; 2. Zhou et al. Mol Cell Biol 2011; 3. Tang et al. Clin Cancer Res 2012; 4. Eischen. J Mol Cell Biol 2017; 5. Zou et al. Nat Immunol 2014; 6. Champiat et al. Clin Cancer Res 2017; 7. Kato et al. Clin Cancer Res 2017.

Figure 1. *MDM2* Amplification in GI Cancers.

Fable 1. *MDM2* Amplification Frequency According to Cancer Type.

GI cancer type

Anal Carcinoma						
Appendiceal Cancer						
Cholangiocarcinoma						
Colorectal Adenocarcinoma						
Esophageal Cancer						
Esophagoga	stric	Junction Carcinoma				
Gastroesophageal, unclear						
Gastric Adenocarcinoma						
Gastrointestinal Stromal Tumors (GIST)						
Liver Hepatocellular Carcinoma						
Pancreatic c	ance	r				
Small Intestinal Malignancies						
	ract ir	Gallbla				
	T _ Ince	Cholangio-Extraher				
	3ilia Cí	Cholangio-Intraher				
	al	Esophageal-adenocarcin				

Bilia C	Cholangio-Intrahep
geal er	Esophageal-adenocarcing
pha(ance	Esophageal-squam
Eso	Esophageal-mixed or unc

Fable 2. Patient Demographics: association with gender and age.

Cancer type	Fe
Anal Carcinoma	
Appendiceal Cancer	
Cholangiocarcinoma	
Colorectal Adenocarcinoma	
Esophageal Cancer	
Esophagogastric Junction Carcinoma	
Gastric Adenocarcinoma	
Gastroesophageal, unclear	
Gastrointestinal Stromal Tumors (GIST)	
Liver Hepatocellular Carcinoma	
Pancreatic cancer	
Small Intestinal Malignancies	
All	

Male gender is more prevalent in *MDM2* amplified than non-amplified GI tumors (P = 0.0091). • A slight increase of age is associated with MDM2 amplification (P = 0.0008).

Cancers.

- *WIF1* (*Q* < 0.001)

Table 3. Summary of Main Molecular Differences According to Selected Tumor Types.

	Biliary Cancer		Esophageal Cancer			Gastric Cancer			Small Bowel Cancer			
	a-MDM2%	na%	Q-value	a-MDM2%	na%	Q-value	a-MDM2%	na%	Q-value	a-MDM2%	na%	Q-value
NGS TP53	16	44	0.002	41	89	< 0.0001	9	57	< 0.0001	8	60	< 0.0001
CNA CDK4	19	0.2	< 0.0001	21	0.2	< 0.0001	6	0.1	0.02	11	0.3	0.02
CNA ERBB3	3	0	0.05	6	0.1	0.01	2	0	0.4	4	0.2	0.8
CNA GNAS	6	0.2	0.005	8	0.7	0.03	0	0.3	1	37	0.5	< 0.0001
CNA HMGA2	42	0.3	< 0.0001	35	0.5	< 0.0001	27	0.2	< 0.0001	52	0.3	< 0.0001
CNA LGR5	31	0.1	0.01	25	0.1	< 0.0001	6	0.1	0.01	18	0	< 0.0001
CNA NACA	5	0.1	< 0.0001	6	0	0.002	2	0	0.4	0	0.2	1
CNA WIF1	36	0.1	< 0.0001	27	0.4	< 0.0001	18	0.1	< 0.0001	38	0.2	< 0.0001
Figure 5	Pathway	v Enri	ichment	Analysi	s bas	ed on A	NDM2 Fx	nress	sion Lev	/els		

FGFR2 ligand binding and activation Homo sapiens R-HSA-190241					
FGFR3 mutant receptor activation Homo sapiens R-HSA-2033514					
Signaling by activated point mutants of FGFR3 Homo sapiens R-HSA-1839130					
FGFRL1 modulation of FGFR1 signaling Homo sapiens R-HSA-5658623	Term	<i>P</i> -value	Adjusted <i>P</i> -value	Odds Ratio	Combined Score
Torkze igand binding and activation from sapiens k-fisk-190375	FGFR2 ligand binding and activation	6.92E-06	0.01	8.9	105.9459641
FGFR3c ligand binding and activation Homo sapiens R-HSA-190372	FGFR3 ligand binding and activation	9.10E-05	0.02	9.8	91.17851172
ECER3 ligand binding and activation Homo saniens R-HSA-190239	FGFR3c ligand binding and activation	9.10E-05	0.02	9.8	91.17851172
Torks ligand binding and activation fiolito sapiens K-13K-190259	FGFR2c ligand binding and activation	9.10E-05	0.02	9.8	91.17851172
Activated point mutants of FGFR2 Homo sapiens R-HSA-2033519	Signaling by activated point mutants of FGFR3	5.79E-05	0.03	10.6	103.5822838
SHC-mediated cascade ECER3 Homo saniens R-HSA-5654704	FGFRL1 modulation of FGFR1 signaling	9.10E-05	0.03	9.8	91.17851172
Site inculated cascader of its fromo sapletis K-from-5054704	FGFR3 mutant receptor activation	5.79E-05	0.04	10.6	103.5822838
Organic anion transport Homo sapiens R-HSA-561048					

pathways in *MDM2* overexpressing tumors (Q < 0.05).

Results

Figure 2. Significant Molecular Differences between *MDM2* Amplified and Non-amplified GI

• Compared to MDM2 not amplified (na), a-MDM2 GI tumors showed lower mutation rates in TP53 (23 vs 69%), KRAS (15 vs 44%), APC (5 vs 41%), and PIK3CA (4 vs 12%), whereas ATM mutations were higher (9.5 vs 4%) (Q < 0.001). • Copy number alterations (CNA) were significantly higher in a-MDM2 vs na, including CDK4, ERBB3, HMGA2, LGR5, NACA and

I Iguie J. Falliway Lillicillient Analysis based on *MDWZ* LAPIESSION Levels.

• A total of 785 genes were significantly differentially expressed based on MDM2 levels, with an increase in FGF signaling related

- MSI-H/dMMR (Q = 0.03).
- shown * TMB-high > 17mut/Mb

Figure 4. *MDM2* Expression According to *TP53* Mutation in *MDM2* Amplified GI Cancers.

GI tumors.

- resistance mechanisms to ICIs
- treatment with MDM2 inhibitors.

Figure 3. Tumor Mutational Burden According to **MDM2** Amplification in GI Cancers.

• *MDM2* amplification had an inverse relationship with TMB (P = 0.01 for TMB as a continuous variable, Q = 0.04 for TMB-high* vs low) and

• No association was found with PDL1 levels and CPS score [data not

TP53, MDM2 category

Among *MDM2* amplified tumors, *TP53*-mutated had a lower copy number of *MDM2* compared to *TP53* wild type (11 copies vs 14, P < P0.05) and lower *MDM2* expression (P = 0.007).

Conclusions

• This is the most extensive profiling study to investigate *MDM2* amplified

• Our data show distinct molecular patterns of MDM2 amplified GI cancers involving WNT pathway genes, upregulation of FGF signaling and inverse association with TMB and MSI which may explain the

• *TP53* mutations and *MDM2* amplification where not mutually exclusive in our cohort, however, lower MDM2 expression was found in TP53mutated tumors suggesting that TP53 mutational status may impact