

Norris Comprehensive Cancer Center Keck School of Medicine of USC

Comprehensive molecular profiling of IDH1/2 mutant biliary cancers (BC)

Francesca Battaglin¹, Joanne Xiu², Yasmine Baca², Anthony F. Shields³, Richard M. Goldberg⁴, Andreas Seeber⁵, Diane Habib¹, Shivani Soni¹, Alberto Puccini¹, Ryuma Tokunaga¹, Hiroyuki Arai¹, Jingyuan Wang¹, Martin D. Berger¹, Igor Astaturov⁶, Craig Lockhart⁷, Wu Zhang¹, John L. Marshall⁸, W. Michael Korn², Heinz-Josef Lenz¹ and Anthony El-Khoueiry¹

1. Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA; 2. Caris Life Sciences, Phoenix, AZ; 3. Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI; 4. West Virginia University Cancer Institute, Morgantown, WV; 5. Department for Hematology and Oncology, Tyrolean Cancer Research Institute, Innsbruck Medical University, Innsbruck, Austria; 6. Fox Chase Cancer Center, Philadelphia, PA; 7. University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL; 8. Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.

PRESENTED AT:

Gastrointestina

Cancers Symposium

Slides are the property of the author, permission required for reuse

Patients and Methods

GI cancer cases N = 27,954		
Biliary cancers (BC) N = 2,057	CRC N = 13,807	Other GI N = 7,243

Multi-platform profiling, Caris Life Sciences:

- Next Generation sequencing (NGS; 75% NextSeq 592gene panel, 25% TruSeq 45-gene panel);
- Gene amplification (NGS, CISH);
- RNA sequencing (Whole Transcriptome Sequencing, n = 3,038; Archer Dx fusion assay, n = 3,025);
- Immunohistochemistry (IHC).

	BC	
GENDER	N	MEDIAN AGE (range)
Female	1124	62.5 (25-91)
Male	933	63.9 (26-90)

IHCC: intrahepatic cholangiocarcinoma **EHCC:** extrahepatic cholangiocarcinoma

PRESENTED AT:

Gastrointestinal Slides a of the a Cancers Symposium required

Slides are the property of the author, permission required for reuse.

IDH1/2 Mutation Frequency in BC

Pathogenic Mutations for IDH2

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

IDH1/2 Mutation Frequency in CRC and Other GI

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Francesca Battaglin, MD

Molecular Profiles of *IDH1/2* Mutant vs WT BC

Pathways associated with IDH-WT cohort

p53 pathway feedback loops 2_Homo sapiens_P04398	
p53 pathway by glucose deprivation_Homo sapiens_P04397	
P53 pathway feedback loops 1_Homo sapiens_P04392	
Wnt signaling pathway_Homo sapiens_P00057	
Angiogenesis_Homo sapiens_P00005	
Cadherin signaling pathway_Homo sapiens_P00012	
Ras Pathway_Homo sapiens_P04393	
p53 pathway_Homo sapiens_P00059	
TGF-beta signaling pathway_Homo sapiens_P00052	
Alzheimer disease-presenilin pathway_Homo sapiens_P00004	

Pathways associated with IDH-MT cohort

PRESENTED AT:

Gastrointestinal slid Cancers Symposium reg

Slides are the property of the author, permission required for reuse.

Amplification rates (CNA) According to IDH1/2 Status in BC

PRESENTED AT:

Gastrointestina

Cancers Symposium required for reuse

Slides are the property of the author, permission

HER2 Expression and Amplification According to *IDH1/2* Status in BC

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

Fusion Detection According to IDH1/2 Status in BC

PRESENTED AT:

Gastrointestinal of th Cancers Symposium regu

Slides are the property of the author, permission required for reuse.

Immune Checkpoint Related Markers According to IDH1/2 Status

Biliary Cancers

Other GI Cancers

TMB cutoff \geq 17 mt/MB MMR/MSI status determined by IHC, FA (Fragment analysis) and NGS

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

Conclusions

- This is the largest and most extensive profiling study to investigate the molecular makeup of IDH1/2 mutated BC and GI tumors.
- IDH1/2 mutations are more prevalent in IHCC compared to other BC. \bullet
- *IDH1/2* mutations are more prevalent in BC compared to other GI malignancies. ullet
- Our data show distinct gene alteration patterns characterizing mIDH BC, involving genes related to chromatin remodeling and DNA repair, and a differential expression of immune related markers compared to other mIDH GI tumors.
- These findings could contribute to the development of rational combination therapies and to improved patient selection in the future.

PRESENTED AT

Gastrointestina Lancers Symposium Slides are the property

PRESENTED BY: