

The landscape of MAP3K1/MAP2K4 alterations in gastrointestinal (GI) malignancies.

Matthew K. Stein^{1,2}, Andrew Elliott³, Jimmy J. Hwang⁴, Emil Lou⁵, Moh'd M. Khushman⁶, Aaron James Scott⁷, John L. Marshall⁸, Davendra Sohal⁹, Benjamin A. Weinberg⁸, Richard M. Goldberg¹⁰, Mohamed E. Salem⁴, W. Michael Korn^{3,11}, Axel Grothey²

1. West Cancer Center, Germantown, TN; 2. University of Tennessee Health Science Center, Memphis, TN; 3. CARIS Life Sciences, Irving, TX; 4. Levine Cancer Institute, Charlotte, NC; 5. University of Minnesota School of Medicine, Minneapolis, MN; 6. Medical Oncology, The University of South Alabama, Mitchell Cancer Institute, Mobile, AL; 7. Banner-University of Arizona Cancer Center, Division of Hematology and Oncology, Tucson, AZ; 8. Georgetown Lombardi Comprehensive Cancer Center, Washington, DC; 9. University of Cincinnati, Cincinnati, OH; 10. West Virginia University Cancer Institute, Morgantown, WV; 11. University of California San Francisco, San Francisco, CA; 2. West Cancer Center, Germantown, TN

Background

• Inactivating alterations in *MAP3K1/MAP2K4* occur in various solid tumors, sensitize cancer models to MEK inhibitors, and have comutation partners which may enable therapeutic targeting.

Methods

- We retrospectively reviewed 20,290 GI malignancy patients (pts), comprised of 9986 colorectal carcinoma (CRC) and 10,304 non-CRC, whose tumors were profiled with Caris Life Sciences from 2015-2019.
- Testing included:
 - Next-generation sequencing (NGS) was performed on genomic DNA isolated from FFPE tumor samples using the NextSeq platform and a custom-designed SureSelect XT assay to enrich 592 cancer-related whole-gene targets.
 - Immunohistochemistry (IHC) for programmed death ligand-1 (PD-L1) utilized the SP142 antibody with a positive threshold of \geq 2+ stain intensity and ≥5% cancer cell staining. In non-CRC, the PD-L1 22c3 antibody was also utilized (CPS scoring method with positive threshold dependent on cancer type).
 - Microsatellite instability-high (MSI-H)/deficient mismatch repair (dMMR) status was evaluated by a combination of fragment analysis, IHC and NGS.
 - Tumor mutational burden (TMB) was measured (592 genes and 1.4 megabases [MB] sequenced per tumor) by counting all non-synonymous missense mutations found per tumor that had not been previously described as germline alterations. The threshold to define TMB-high was ≥17 mutations/MB.
- Genetic variants identified were interpreted by board-certified molecular geneticists. All truncating MAP3K1/MAP2K4-alterations (MAP3K1/MAP2K4-MT) were considered presumed pathogenic, and all patients (pts) with pathogenic/presumed pathogenic were included in the MAP3K1/MAP2K4-MT cohort. Variants of undetermined significance (VUS) were classified as presumed benign and not included.
- Statistical analysis was performed using Chi-square or Fisher's exact tests where appropriate, with significant differences determined by p-values of <0.05 (*denotes raw p<0.05, and **denotes p<0.05 following correction for multiple hypothesis testing using the Benjamini & Hochberg method).

Results

Cha

Total Med

Fema

230.0% **o** 25.0% **b** 20.0% <u>9</u> 15.0%

• MAP3K1/MAP2K4-MT CRC pts were more frequently right-sided (36% v. 22%, p<0.0001) and transverse (8% v. 4%, p<0.05) compared to WT, whereas WT cases were more frequently leftsided (20% v. 28%, p<0.05) and rectal (15% v 23%, p<0.05).

90.0%

80.0%

60.0% 0 σ 50.0% **D** 40.0%

00 of 20.0%

10.0%

Table 1. – Patient characteristics

racteristic	All GI Malignancies	CRC MAP3K1/ MAP2K4- MT	CRC MAP3K1/ MAP2K4- WT	Non-CRC MAP3K1/ MAP2K4- MT	Non-CRC MAP3K1/ MAP2K4- WT
l, N cases	20,290	200	9786	121	10,183
lian Age, years (SD)	63 (12.6)	61 (13.4)	61 (13.0)	69 (11.9)*	65 (11.9)
Age Range, years	0-90+	18-90+	14-90+	33-90+	0-90+
ale/Male, N cases % Female)	8831/11,459 (43.5%)	83/117 (41.5%)	4420/536 6 (45.2%)	62/59 (51.2%)*	4266/5917 (41.9%)

*denotes p < 0.05.

MAP3K1/MAP2K4-MT were more frequent in CRC than non-CRC pts (2.0% v. 1.2%, p<0.0001), with truncating mutations representing the majority.

Figure 1. – Association of MAP3K1/MAP2K4-MT by sidedness in CRC

• No difference in PD-L1 IHC (SP142 or 22c3) in non-CRC malignancies was observed.

	Total	MAP3K1 and/or MAP2K4-	% MAP3K1 and/or MAP2K4-
Cancer Type	cases	mutated	mutated
Colorectal Adenocarcinoma	9986	200	2.0%
Non-Colorectal Adenocarcinoma	10304	121	1.2%
Small Intestine	560	16	2.9%
Gastric	1495	31	2.1%
Cholangiocarcinoma	1668	23	1.4%
Pancreatic	3430	31	0.9%
Appendiceal	523	4	0.8%
Esophageal	1366	9	0.7%
Esophagogastric Junction	595	4	0.7%
Hepatocellular Carcinoma	386	2	0.5%
Anal Carcinoma	281	1	0.4%
Total	20290	321	1.6%

CRC dMMR/MSI-H

non-CRC dMMR/MSI-H

All CRC TMB-high

All non-CRC TMB-high

MSS CRC TMB-high

MSS non-CRC TMB-high

All CRC PD-L1 (SP-142)

Table 2. – Frequency of *MAP3K1/MAP2K4*-MT by GI malignancy site.

Figure 2. – Immune biomarker comparison of MAP3K1/MAP2K4-MT with WT.

Figure 3. – Comparison of selected co-mutation rates of MAP3K1/MAP2K4-MT versus WT CRC MSS patients.

Results, continued

Conclusions

- or KRAS.

References

- inhibitors in multiple cancer models. Cell Res, 2018.
- mutations in PIK3CA and MAP3K1 in breast cancer. Oncotarget, 2018.

Figure 4. – Comparison of selected co-mutation rates of MAP3K1/MAP2K4-MT versus WT

Truncating MAP3K1/MAP2K4 alterations occur in nearly 2% of GI malignancy pts and are more commonly associated with dMMR/MSI-H, higher TMB and other immune biomarkers than WT.

In CRC, MAP3K1/MAP2K4-MT pts had a greater tendency for PIK3CA and APC co-mutation and significantly lower TP53 co-mutation versus WT pts; no difference was seen in *BRAF V600E*, *ERBB2/ERBB3*,

Potentially targetable co-mutation partners implicated in PI3K and MAPK pathways as well as POLE, BRCA2 and ATM warrant further evaluation, as well as a high co-mutation rate with ARID1A.