

Abstract ID: 4064

The landscape of DNA damage response (DDR) pathway in colorectal cancer (CRC)

Hiroyuki Arai¹, Andrew Elliott², Joanne Xiu², Jingyuan Wang¹, Francesca Battaglin¹, Shivani Soni¹, Wu Zhang¹, Davendra Sohal³, Richard M. Goldberg⁴, Michael J. Hall⁵, Aaron James Scott⁶, Mohd Khushman⁷, Jimmy J. Hwang⁸, Emil Lou⁹, Benjamin A. Weinberg¹⁰, John Marshall¹⁰, Albert Craig Lockhart¹¹, Phillip Stafford², Jian Zhang², W. Michael Korn², and Heinz-Josef Lenz¹

Introduction

Abnormal DDR is a hallmark of cancer, relating to genome instability, anti-tumor immunity, and sensitivity to chemotherapeutic agents and radiation [1-5]. We conducted a large-scale investigation to clarify the alteration of DDR pathway in CRC.

- Hanahan D, et al. Cell. 2011. 144:646-74
- 2. William M Grady. et al. Gastroenterology. 2008. 135:1079-99.
- al. Nature Communications. 2017. 8:1751
- 4. Sen T, et al. Cancer Discovery. 2019. 9:646-61. Goldstein M. et al. Annual Review of Medicine. 2015. 66:129-43

Method

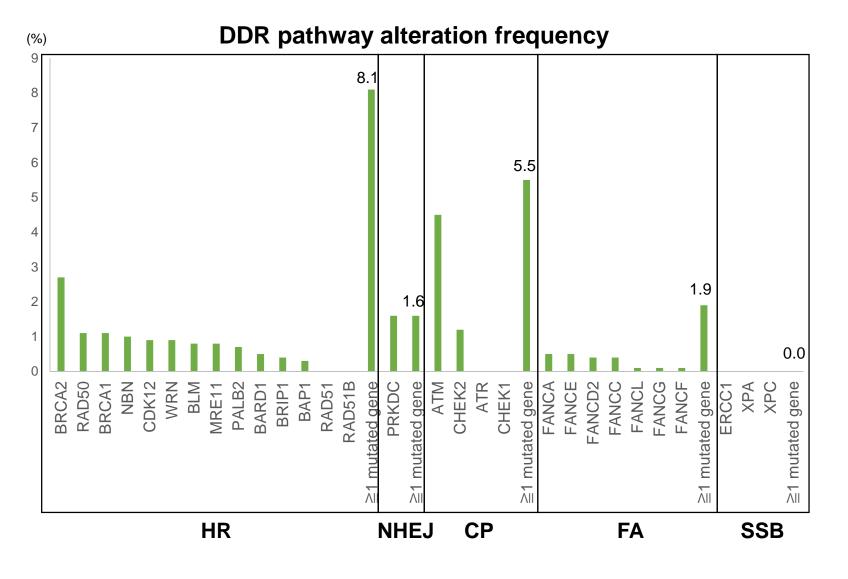
- Tumor samples from 9321 CRC patients were retrospectively reviewed.
- Next-Generation Sequencing (NGS) on a custom-designed panel enriching 592 gene targets was performed.
- Samples with mutations detected in any of 29 DDR-related genes were deemed DDR-mutant (DDR-MT); the rest DDR-wild type (DDR-WT).
- Microsatellite instability (MSI) status was tested with a combination of immunohistochemistry (IHC), fragment analysis and NGS.
- Tumor mutational burden (TMB) was calculated based on somatic nonsynonymous missense mutations.
- PD-L1 was tested by IHC (SP142).
- Consensus molecular subtype (CMS) was developed using RNA sequencing data.

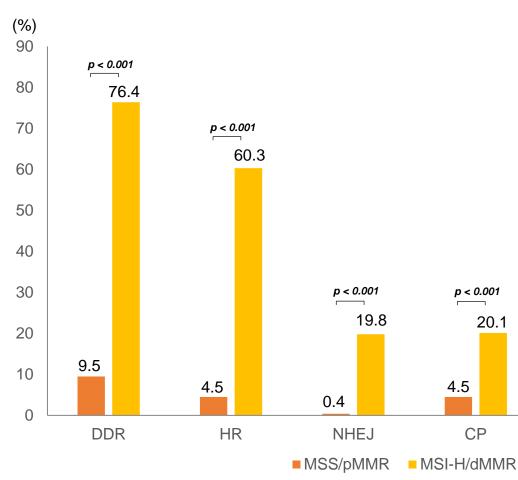
29 DDR-related genes

		BAP1				
		BARD1				
		BLM				
		BRCA1				
		BRCA2				
	HR	BRIP1				
		CDK12				
		MRE11				
		NBN				
		PALB2				
		RAD50				
		RAD51				
		RAD51B				
		WRN				
DDR pathways	NHEJ	PRKDC				
		ATM				
		ATR				
	СР	CHEK1				
		CHEK2				
		FANCA				
		FANCC				
		FANCD2				
	FA	FANCE				
		FANCF				
		FANCG				
		FANCL				
		ERCC1				
	SSB repair	XPA				
		XPC				

<Abbreviations>

HR

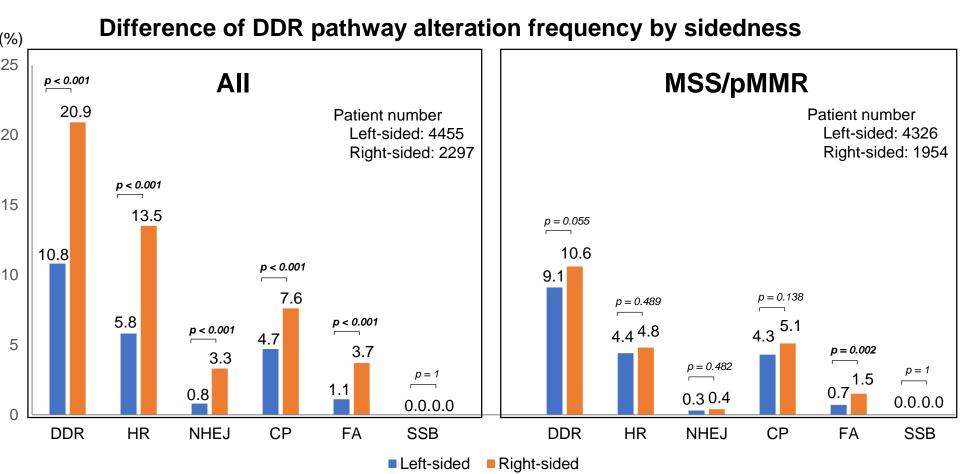

FA:


SSB:

homologous recombination non-homologous end joining checkpoint Fanconi anemia single strand break

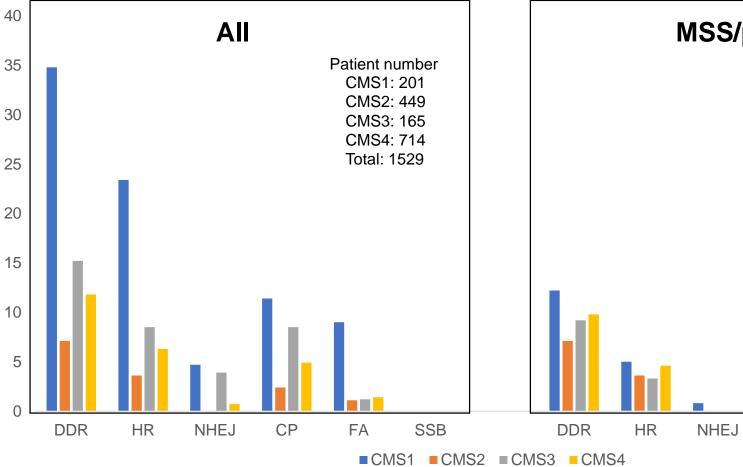
	Total 9321 60 (14-90+)		D	DDR-MT		R-WT	<i>P</i> -velue (DDR-MT vs WT)	
nt number			1290 (13.8%) 62 (16-90+)		8031 60 (14-90+)			
an age (range)							0.008	
le nale	5011 4310	(53.8%) (46.2%)	637 653	(49.4%) (50.6%)	4374 3657	(54.5%) (45.5%)	<0.001	
ry tumor location t ht clear	4455 2297 2569	(47.8%) (24.6%) (27.6%)	482 479 329	(37.4%) (37.1%) (25.5%)	3973 1818 2240	(49.5%) (22.6%) (27.9%)	<0.001	
IMR status I-H/dMMR S/pMMR clear	597 8702 22	(6.4%) (93.4%) (0.2%)	456 829 5	(35.3%) (64.3%) (0.4%)	141 7873 17	(1.8%) (98.0%) (0.2%)	<0.001	

	Т	otal	DDR-MT		DDR-WT		<i>P</i> -velue (DDR-MT vs WT)	
Patient number	9321		1290 (13.8%)		8031			
Median age (range)	60 (´	14-90+)	62 (16-90+)		60 (14-90+)		0.008	
Sex								
Male	5011	(53.8%)	637	(49.4%)	4374	(54.5%)	<0.001	
Female	4310	(46.2%)	653	(50.6%)	3657	(45.5%)		
Primary tumor location								
Left	4455	(47.8%)	482	(37.4%)	3973	(49.5%)	-0.001	
Right	2297	(24.6%)	479	(37.1%)	1818	(22.6%)	<0.001	
Unclear	2569	(27.6%)	329	(25.5%)	2240	(27.9%)		
MSI/MMR status								
MSI-H/dMMR	597	(6.4%)	456	(35.3%)	141	(1.8%)	.0.004	
MSS/pMMR	8702	(93.4%)	829	(64.3%)	7873	(98.0%)	<0.001	
Unclear	22	(0.2%)	5	(0.4%)	17	(0.2%)		

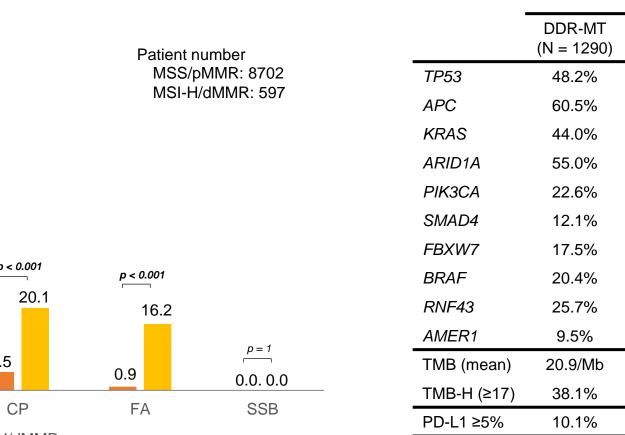


1 Norris Comprehensive Cancer Center, University of Southern California, 2 Caris Life Sciences, 3 University of Cincinnati, 4 West Virginia University, 5 Fox Chase Cancer Center, 6 University of Arizona, 7 University of South Alabama, 8 Levine Cancer Institute, 9 University of Minnesota, 10 MedStar Georgetown, 11 University of Miami

Patient characteristics


Results

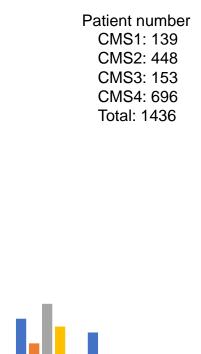
(%)



Difference of DDR pathway alteration frequency by MSI/MMR status

Difference of DDR pathway alteration frequency by CMS subtype

Comparison of DDR-MT and DDR-WT on major gene mutations and immune profiles


•					, 0			•	
		All			MSS/pMMR		MSI-H/dMMR		
	DDR-MT (N = 1290)	DDR-WT (N = 8031)	P-value	DDR-MT (N = 829)	DDR-WT (N = 7873)	P-value	DDR-MT (N = 456)	DDR-WT (N = 141)	<i>P</i> -value
TP53	48.2%	76.1%	<0.001	55.8%	76.9%	<0.001	34.8%	32.9%	0.679
APC	60.5%	74.5%	<0.001	70.4%	75.1%	0.004	42.3%	46.1%	0.429
KRAS	44.0%	49.8%	<0.001	52.6%	50.2%	0.187	27.9%	27.0%	0.834
ARID1A	55.0%	19.1%	<0.001	22.4%	16.7%	0.042	74.4%	72.9%	0.774
PIK3CA	22.6%	15.8%	<0.001	18.0%	15.6%	0.077	30.9%	26.2%	0.288
SMAD4	12.1%	12.3%	0.771	15.3%	12.4%	0.017	6.4%	9.9%	0.152
FBXW7	17.5%	8.5%	<0.001	11.5%	8.2%	0.002	28.2%	24.6%	0.417
BRAF	20.4%	7.3%	<0.001	8.0%	6.8%	0.188	43.3%	34.3%	0.058
RNF43	25.7%	3.0%	<0.001	3.4%	2.3%	0.043	66.4%	41.8%	<0.001
AMER1	9.5%	5.1%	<0.001	6.7%	5.3%	0.107	14.8%	12.1%	0.438
TMB (mean)	20.9/Mb	7.7/Mb	<0.001	13.7/Mb	7.6/Mb	0.017	54.5/Mb	27.8/Mb	<0.001
TMB-H (≥17)	38.1%	2.1%	<0.001	5.6%	0.6%	<0.001	97.1%	84.1%	<0.001
PD-L1 ≥5%	10.1%	2.7%	<0.001	4.8%	2.4%	<0.001	19.8%	20.4%	0.874

MERIT AWARD RECIPIENT

Summary

MSS/pMMR

FA

SSB

CP

- Of 9321 cases, 1290 (13.8%) were DDR-MT. Alteration frequency in HR, NHEJ, CP, FA, and SSB pathways was
- 8.1%, 1.6%, 5.5%, 1.9%, and 0.0%, respectively. DDR-MT frequency was higher in right vs. left sided (20.9% vs 10.8%, p <0.001) and MSI-H vs. MSS (76.4% vs 9.5%, p <0.001)
- cases. In the MSS cases, right-sided had marginally higher frequency of DDR-MT than left-sided (10.6% vs 9.1%, p = 0.055), with much higher frequency of Fanconi anemia pathway alteration in rightsided (1.5% vs 0.7%, p<0.01).
- CMS1 subtype had the highest frequency of DDR-MT (34.8%); CMS2 had the lowest (7.1%).
- DDR-MT cases (vs. DDR-WT) had higher mutation rate of ARID1A (55.0% vs 19.1%, p<0.0001), *PIK3CA* (22.6% vs 15.8%, p<0.0001) and BRAF (20.4% vs 7.3%, p<0.0001), and lower mutation rate of *TP53* (48.2% vs 76.1%, p<0.0001), *APC* (60.5% vs 74.5%, p<0.0001) and KRAS (44.0% vs 49.8%, p<0.001).
- Mean TMB was much greater in DDR-MT than DDR-WT (All: 20.9/Mb vs 7.7/Mb, p<0.0001; MSS: 13.7/Mb vs 7.6/Mb, p<0.05). *PD-L1* positivity was also higher in DDR-MT compared to DDR-WT (All: 10.1% vs 2.7%, p<0.0001; MSS: 4.8% vs 2.4%, p<0.0001).

Conclusions

- Alteration of the DDR pathway was strongly associated with MSI status in CRC.
- DDR-MT was more prevalent in right-sided tumors compared to left-sided tumors.
- **Elevated TMB and PD-L1 expression in DDR-MT CRC** indicate more activated anti-tumor immune profiles compared to DDR-WT, regardless of MSI status, suggesting possible therapeutic benefit from immune checkpoint inhibitors in DDR-MT CRC.

Contact us: hiroyuki.aria.1217@gmail.com