

ASCO 2020

Meera Patel¹, Andrew Elliott², Stephen V. Liu³, Chul Kim³, Luis E. Raez⁴, Rebecca Feldman², Sachin G. Pai⁵, Antoinette J. Wozniak⁶, Misako Nagasaka¹, Gilberto Lopes⁷, Alexander I. Spira⁸, Edward S. Kim⁹, W. Michael Korn^{2,10}, and Hirva Mamdani¹

¹Karmanos Cancer Institute/ Wayne State University, Detroit, MI, ²CARIS Life Sciences, Irving, TX, ³ Lombardi Comprehensive Cancer Center/ Georgetown University, Washington, DC, ⁴Memorial Cancer Center/ Florida International University, Miami, FL, ⁵Mitchell Cancer Institute/ University of South Alabama, Mobile, AL, ⁶Hillman Cancer Center/ University of Pittsburgh, Pittsburgh, PA, ⁷Sylvester Cancer Center/ University of Miami, FL, ⁸Virginia Cancer Specialists, Fairfax, VA, ⁹Levine Cancer Institute, Atrium Health, Charlotte, NC, ¹⁰University of California San Francisco, San Francisco, CA.

BACKGROUND

Abstract # 9056

- Malignant pleural mesothelioma (MPM) is a relatively uncommon malignancy with poor prognosis and no major therapeutic breakthroughs over the past decade.
- Better understanding of the genomic landscape and distribution of immune biomarkers in this disease has the potential to enable development of novel therapies.

STUDY OBJECTIVES

- Investigate the genomic landscape of MPM.
- Analyze the differences of TMB and PD-L1 expression in MPM.
- Assess the differences in genomic alterations and TMB/PD-L1 in the context of age, gender, and molecular pathway alterations.

METHODS

- We retrospectively analyzed molecular profiles of MPM tumors (N=222) submitted to Caris Life Sciences.
- Profiling included next-generation sequencing (NGS) of 592 genes, Tumor Mutational Burden (TMB), and PD-L1 expression by immunohistochemistry using SP142 antibody.
- Analyzed pathways:
- DNA damage response and repair (DDR): ATM, ATRX, BAP1, BARD1, BLM, BRCA1/2, BRIP1, CDK12, CHEK1/2, ERCC1/2/3/4/5, FANCA/C/D2/E/F/G/L, MLH1, MRE11, MSH2/6, MUTYH, NBN, PALB2, PMS2, POLE, PRKDC, RAD50/51B, WRN, XPA, XPC
- Cell cycle regulation: CCND1/2/3, CCNE1, CDKN2A, CDK4/6, CDKN1B/2A, MAX, MYC, RB1
- Chromatin remodeling (CR): ARID1A/2, ASXL1, BCL11A/B, BCL7A, BRD3/4, DNMT3A, EP300, EZH2, KDM5A/5C/6A, KMT2A/C/D, NSD1/2/3, PBRM1, SETD2, SMARCB1/A4, SS18, SS18L1
- RAS/MAPK: ARAF, BRAF, CRKL, H/K/NRAS, MAP2K1/2/4, MAP3K1, NF1/2, RAF1
- PI3K/AKT: AKT1/2/3, MTOR, PIK3CA/G, PIK3R1/2, PTEN, RICTOR, TSC1/2, ZNF703
- TP53 Pathway: MDM2, PRDM1, TP53
- Available clinical information: Age and gender

• Median age - 72 years (range, 37-90) • 73% men, 27% women

81% of cases had at least one pathway alteration. DDR, especially homologous recombination (HR), was the most commonly mutated pathway.

Genomic Landscape and Immune Phenotype of Malignant Pleural Mesothelioma

RESULTS

Pathway Alterations by Gender

No statistically significant differences were found, except for CR pathway being more commonly mutated in women (p=0.02)

PATHOGENIC AND PRESUMED PATHOGENIC MUTATIONS BY AGE

Genes mutated in ≥5% of cases included BAP1 (26.3%), NF2 (23.5%), *TP53* (15.5%), *SETD2* (10.2%). HR gene *BAP1* and CR gene SETD2 mutations trended to be more prevalent in pts ≥70 yo (*p*=0.02).

TMB was high (>10 mutations/Mb) in 9.6% of tumors (n=20). None of the tumors were Mismatch Repair Deficient/Microsatellite Instability-High (dMMR/MSI-H).

Distribution of PD-L1 Expression (SP142 IHC)

No statistically significant difference in PD-L1 expression among different pathways

CONCLUSION

- The majority of MPM tumors harbor alteration in one of the key cellular pathways.
- HR pathway mutations are the most common.
- The majority of tumors were PD-L1 negative and carry low TMB indicating low immunogenicity. No age and gender specific differences exist except for BAP1 and SETD2 mutations.

Authors' Contact Information: First Author: Meera Patel MD - patelm@karmanos.org Senior Author: Hirva Mamdani MD - mamdanih@karmanos.org

