Keck School of Medicine of USC

Comprehensive gene expression analysis of *IDH1/2* mutant biliary cancers (BC)

Francesca Battaglin¹, Joanne Xiu², Yasmine Baca², Jia Zeng², Anthony F. Shields³, Richard M. Goldberg⁴, Andreas Seeber⁵, Diane Habib¹, Alberto Puccini¹, Ryuma Tokunaga¹, Hiroyuki Arai¹, Jingyuan Wang¹, Martin D. Berger¹, Igor Astaturov⁶, A. Craig Lockhart⁷, Wu Zhang¹, John L. Marshall⁸, W. Michael Korn², Heinz-Josef Lenz¹ and Anthony El-Khoueiry¹

1. Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA; 2. Caris Life Sciences, Phoenix, AZ; 3. Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI; 4. West Virginia University Cancer Institute, Morgantown, WV; 5. Department for Hematology and Oncology, Tyrolean Cancer Research Institute, Innsbruck, Austria; 6. Fox Chase Cancer Center, Philadelphia, PA; 7. University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL; 8. Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.

Introduction

- Isocitrate dehydrogenases (IDH) mutations identify a distinct subtype of BC that has yet to be fully characterized.
- We recently showed that *IDH1/2* mutant BC harbor specific gene alterations involving chromatin remodeling and DNA repair, and a differential immune markers profile compared to other *IDH* mutant gastrointestinal tumors [1].
- Here we aim to further dissect the molecular profile of IDH mutant BC through a comprehensive gene expression profiling analysis.

Methods

- 524 BC samples (303 intrahepatic cholangiocarcinoma, IHCC, 67 extrahepatic cholangiocarcinoma, EHCC, 141 gallbladder, 13 unspecified) collected between February to December of 2019 were included in the analysis.
- were analyzed using NextGen DNA sequencing Samples (NextSeq, 592 gene panel), whole transcriptome RNA sequencing (NovaSeq) and immunohistochemistry (Caris Life Sciences, Phoenix, AZ).
- EBseq was used to identify differentially expressed genes in *IDH* mutant vs wild type (WT) tumors with control for false discovery rate (FDR, Q < 0.2).
- Pathway and functional enrichment analysis was performed using g:Profiler and Enrichr.
- Microenvironment Cell Population-counter (MCP-counter) was used for quantification of the abundance of immune and stromal cell population using transcriptomic data [2].

1. Battaglin et al. J Clin Oncol, 2020. 2. Becht et al. Genome Biology, 2016.

Figure 1. Study Population.

Figure 2. *IDH1/2* Mutation Frequency.

Table 1. Patient Demographics.

Mutational Status	FEMALE	MALE	MEDIAN AGE (range)
<i>IDH</i> WT	237	227	64.9 (26-91)
<i>IDH1</i> Mut	32	14	64.3 (35-84)
<i>IDH2</i> Mut	11	3	61.1 (26-91)

- *IDH* mutation was more common in females (P = 0.0036).
- No significant association with age was observed.

Gene expression comparison IDH WT/MT

Figure 3. Mutational Profiles of IDH1/2 Mutant

Figure 4. Immune Checkpoint Related Markers According to IDH1/2 Status.

TMB cutoff >17 mt/MB. MSI-H/dMMR status determined by IHC, Fragment analysis and NGS.

Gene Expression Analyses Workflow.

• A total of 774 genes were significantly differentially expressed between *IDH* mutant and WT: 582 underexpressed (Fold change, FC: 0.025~0.699); 192 overexpressed (FC: 1.43~3.3).

Differentially expressed gene

Gene set enrichment analysis

athway analysi

Figure 5. Hallmarks of Cancer Evaluation via g: Profiler of Differentially Expressed Genes in *IDH* Mutant and WT Tumors.

INFLAMMATO

KRAS_SIG

* only significant results are shown.

Figure 6. KEGG Analysis of Underexpressed Genes in *IDH* **Mutant Tumors.**

Cytokine-cytokine receptor
Pancreatic secretion
Neuroactive ligand-recepto
Primary immunodeficiency
Basal cell carcinoma
Nitrogen metabolism
cAMP signaling pathway
Taste transduction
Gastric cancer
Hippo signaling pathway

Term Name

Cytokine-cytokine receptor interaction

Figure 8. WikiPathways Gene Set Evaluation via g: Profiler of **Differentially Expressed Genes in IDH Mutant and WT Tumors.**

Term Na

Cancer immu by PD-1 blo * only significan

> IFNG CD8B BATF PDC LCK PDC

Results

ne Sets	Adjusted <i>P</i> -value *	Enrichment Score	Term Size	Query Size	Intersection Size
DRY_RESPONSE	0.0048	2.313	200	143	17
GNALING_DN	0.0049	2.313	200	143	17

me	ID	Adjusted <i>P</i> -value *	Negative log10 Adj <i>P</i> -value	Term Size	Query Size	Intersectior Size
nothera ockade	Py WP:WP4585	0.020	1.681	23	244	6
t results	s are shown.					
Cai	ncer immunothera	py by PD-1	blockade	F	C MT/M	/Т
	interferon gamma				(0.32
3	CD8b molecule				(0.37
	basic leucine zipp	er ATF-like t	transcription factor		(0.40
D1	programmed cell	death 1			(0.53
	LCK proto-oncoge	ene, Src fam	nily tyrosine kinase		(0.55
01LG2	programmed cell	death 1 ligai	nd 2			D.61

Conclusions

• Our data show for the first time a distinct gene expression profile characterizing *IDH* mutant tumors which display significant downregulation of inflammatory response pathways and immune-related genes, coupled with significantly lower B cell infiltration and higher endothelial abundance.

• These findings contribute to further the understanding of *IDH* mutant BC and may inform the future development of rational combination therapies.

	HALLMARK INFLAMMATORY RESPONSE	FC MT/WT
ROS1	ROS proto-oncogene 1, receptor tyrosine kinase	0.12
IL1A	interleukin 1 alpha	0.20
NDP	norrin cystine knot growth factor NDP	0.22
CSF3	colony stimulating factor 3	0.24
OSM	oncostatin M	0.30
CD70	CD70 molecule	0.40
GNA15	G protein subunit alpha 15	0.41
RGS16	regulator of G protein signaling 16	0.51
IRAK2	interleukin 1 receptor associated kinase 2	0.52
LCK	LCK proto-oncogene, Src family tyrosine kinase	0.55
SELE	selectin E	0.55
PTGER2	prostaglandin E receptor 2	0.56
MEFV	MEFV innate immunity regulator, pyrin	0.58
CCR7	C-C motif chemokine receptor 7	0.58
KCNA3	potassium voltage-gated channel subfamily A member 3	0.63
SLAMF1	signaling lymphocytic activation molecule family member 1	0.67
SCN1B	sodium voltage-gated channel beta subunit 1	1.43

Figure 7. Panther Analysis of Differentially Expressed Genes in *IDH* Mutant and WT Tumors. rus oralise me die tine of other of other

Panther 2016

Cadherin signaling pathway Homo sapiens_P00012 Wnt signaling pathway

Homo sapiens_P00057

Figure 9. MCP Counter Results in *IDH* Mutant vs WT Tumors.

Abstract ID: 4598

fbattagl@usc.edu

Drs. Rachna and Puneet Shroff **Endowed Merit Award** Supported by Drs. Rachna and Puneet Shroff

				Called in Store All Do Parisco of the Alegal
			GNG4	
		1	GNG3	
			GNA15	
_			PRKCG	
4			DRD4	
DOFOR	2		DRD2	
ns P0591	2		DDC	
			WNT5B	
			WNT7A	
Homo ca	piens P00042		CTNNA2	
Homo sapiens P00042			FZD7	
7			ACTC1	
			WNT11	
o alpha m	nediated pathway Homo s	apiens P00027	WNT16	
o aipina fi	realized patienty nomo s	apicità 1 000E1	WNT2B	
g pathway Homo sapiens P00031			GRIA4	
			SLC1A7	
piens POC	0039		GRIK3	
			GRIN2D	
			GRIN1	
			orman	
	Orverlen			
	Overlap	<i>P</i> -value	A	ajusted <i>P</i> -value
1				
,	24/150	3.45E-09		3.86E-07

1.32E-07 7.40E-06 31/278

• Significantly lower B cell infiltration and higher endothelial abundance in MT tumors.