

Alterations in targetable molecular pathways are enriched in *KRAS* wild-type (WT) pancreatic cancer (PC).

Philip Agop Philip¹, Joanne Xiu², Michael J. Hall³, Andrew Eugene Hendifar⁴, Emil Lou⁵, Jimmy J. Hwang⁶, Jun Gong⁴, Michelle Ellis², Moh'd M. Khushman⁷, Davendra Sohal⁸, A. Craig Lockhart⁹, Benjamin Adam Weinberg¹⁰, John Marshall¹⁰, Axel Grothey¹¹, Anthony Frank Shields¹², W. Michael Korn²

¹Karmanos Cancer Institute, Detroit, MI; ²Caris Life Sciences, Phoenix, AZ; ³Fox Chase Cancer Center, Los Angeles, CA; ⁵University of Minnesota School of Medicine, Minneapolis, MN; ⁶Levine Cancer Institute, Detroit, MI; ²Caris Life Sciences, Phoenix, AZ; ³Fox Chase Cancer Center, Los Angeles, CA; ⁵University of Minnesota School of Medicine, Minneapolis, MN; ⁶Levine Cancer Institute, Detroit, MI; ²Caris Life Sciences, Phoenix, AZ; ³Fox Chase Cancer Center, Los Angeles, CA; ⁵University of Minnesota School of Medicine, Minneapolis, MN; ⁶Levine Cancer Institute, Detroit, MI; ⁴Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA; ⁵University of Minnesota School of Medicine, Minneapolis, MN; ⁶Levine Cancer Institute, Detroit, MI; ⁴Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Cedars-Si Charlotte, NC; ⁷Medical Oncology, The University of South Alabama, Mitchell Cancer Institute, Mobile, AL; ⁸University of Cincinnati, CH; ⁹University of CH; ⁹ Germantown, TN; ¹²Karmanos Cancer Institute, Wayne State University, Detroit, MI

Background:

Genomic profiling has identified *KRAS* mutations in 88-90% of PC. *KRAS* WT tumors represent a molecularly heterogeneous group that may harbor targetable alterations. We studied KRAS WT PC using NextGen sequencing (NGS) and whole transcriptome sequencing (WTS) in a large cohort of pancreatic tumors to characterize the molecular landscape of this unique group and to assess the prevalence of targetable alterations.

Methods:

- NGS was performed on genomic DNA isolated from FFPE tumor samples using the NextSeq (592-genes) (Illumina, Inc., San Diego, CA).
- > All variants were detected with greater than 99% confidence based on allele frequency and amplicon coverage, with an average sequencing depth of coverage of greater than 500 and an analytic sensitivity of 5%.
- > A combination of multiple test platforms including NGS, IHC and fragment analysis was used to determine MSI-H/dMMR status.
- > Tumor mutational burden (TMB) was estimated from 592 genes (1.4 megabases [MB] sequenced per tumor) by counting all non-synonymous missense mutations found per tumor that had not been previously described as germline alterations.
- IHC was performed on FFPE sections of glass slides. PD-L1 testing was performed using the SP142 (Ventana, Tucson, AZ) anti-PD-L1 clone.
- > Gene fusion detection using the Illumina NovaSeq platform (Illumina, Inc., San Diego, CA) and Agilent SureSelect Human All Exon V7 bait panel (Agilent Technologies, Santa Clara, CA).
- Microenvironment Cell Population-counter (MCP-counter) was used for quantification of the abundance of immune and stromal cell population using transcriptomic data. (Becht et al. Genome Biology 2016, 17:218)
- > Chi-square and Wilcoxon were used for comparative analyses and Benjamini-Hochberg was used to correct for multiple comparison.

Results:

Table 1: patient characteristics

tumors

	Histology	<i>KRAS</i> WT (N)	<i>KRAS</i> MT (N)	Total	<i>KRAS</i> WT (%)	KRAS MT (%
	All	144	1020	1164		
	Adenocarcinoma, NOS*	122	943	1065	85%	92%
	Carcinoma, NOS*	14	45	59	10%	4%
	Acinar	3	1	4	2%	0%
	Mucinous	2	12	14	1%	1%
Histology	pseudopapillary	2		2	1%	0%
	spindle	1	2	3	1%	0%
	giant cell		2	2	0%	0%
	Non-small cell		3	3	0%	0%
	PMP		1	1	0%	0%
	Squamous/Adenosquamous		11	11	0%	1%
Gender	Female	67	473		47%	46%
	Male	77	547		53%	54%
Age	Median	66	67			
	Range	36-92	25-90			

Fusion-WTS-BRA
NGS -BRAF
Fusion-WTS-RAF
NGS -NF1
NGS -GNAS
CNA-KRAS
METexon14skip
Fusion-WTS-ME
CNA-MET
Fusion-WTS-FGF
Fusion-WTS-FGF
CNA-FGFR2
CNA-FGFR3
CNA-FGFR4
NGS -FGFR2
Fusion-WTS-ERB
NGS -FRBB2
IHC-Her2/Neu
CISH-Hor2 CISH
Eusion M/TS ND/
Fusion WTS ECE
NGS -ERBBS
Fusion-WIS-ROS
Fusion-WIS-REI
Fusion-WIS-ALK
Fusion-WTS-NO
NGS -APC
NGS -CTNNB1
NGS -RNF43
Fusion-WTS-RSP
NGS -BRCA2
NGS -BRCA1
NGS -ATM
NGS -CHEK2
NGS -PALB2
NGS -ARID1A
NGS -ARID2
NGS -PBRM1
NGS -BAP1
NGS -PIK3CA
NGS -PTEN
CNA-AKT2
CNA-AKT3
MSI-H/dMMR
NGS -NOTCH1
CNA-MDM2
CNA-MYC
CNA-NTRK1
CNA-FLT4
CNA-DDR2
CNA-ROS1
CNA-MDM4

No significant imbalance in histology, gender or age noted in KRAS wild type vs. mutated

Figure 1: Notable alterations in the 144 *KRAS*-wild type pancreatic tumors Left: mutations detected; middle: additional alterations detected including Copy number alteration (CNA), MSI/MMR and PD-L1 IHC; right: details of BRAF mutations and categorization based on mechanism of activation

Figure 2: Oncoprint of the 144 KRAS-WT pancreatic tumors. Colored squares: alteration (mutation, fusion, copy number amplification, IHC overexpression, CISH amplification). Gray squares: no

alteration detected. Blank: test not done or indeterminate results.

BRAF mutations	Class	
V600E	Class 1	
V600R	Class 1	
G469A	Class 2	
K601E	Class 2	
L485_A489delinsF	Class 2	
N486_P490del	Class 2	
N486_P490del	Class 2	
N486_P490del	Class 2	
T599dup	Class 2	
T599dup	Class 2	
V600_K601delinsE	Class 2	
D594G	Class 3	
D594N	Class 3	

Figure 4: Volcano plot displaying significance (the higher on the y axis, the smaller the p values) and fold changes (the farther away from 0 on the x axis, the bigger the differences are between *KRAS* vs. WT tumors)

 Table 2: Fusions detected
 by whole transcriptome sequencing in *KRAS* WT pancreatic cohort

Conclusions

- > KRAS WT PC is significantly more enriched with targetable alterations (e.g., BRAF, ALK, ROS1, NRG1, MSI-H) as compared to KRAS MT tumors, suggesting potential benefit of using targeted therapies.
- The use of WTS in combination with NGS identifies activated molecular pathways in the majority of *KRAS* WT tumors.
- > Based on our findings, comprehensive profiling of PC at the DNA and RNA level is recommended to provide patients with therapeutic opportunities beyond standard treatments.
- > TMB and MSI tend to be higher in *KRAS* WT tumors; microenvironment inferred from WTS using MCP counter suggest more activated innate immunity with a lower fibroblast abundance, suggesting unique immune treatment strategy design.

Reference

- Using Gene ExpressionGenome Biology (2016) 17:218
- Raphael et al. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma
- 2017, Cancer Cell 32, 185–203

Figure 3: Immune characterization of *KRAS*-WT vs. **KRAS MT tumors.** Top: PDL1, MSI/MMR and TMB; Middle and Bottom: MCP counter calculated NK and fibroblasts in the tumor microenvironment.

Abstract #: 4629

	Fusions	Ν		Fusions	Ν
ALK	EML4:ALK	3		MET exon14 skip	1
	AGAP3:BRAF	2		ST7:MET	1
	BACH1:BRAF	1	NOTCH1	FAM53B:NOTCH1	1
DDAE	SND1:BRAF	4	NRG1	NRG1 ATP1B1:NRG1	
DRAF	TRIM24:BRAF	1	PRKCB	UBFD1:PRKCB	1
	TRIM44:BRAF	1		ATG7:RAF1	1
	VPS50:BRAF	1	KAF1	RRBP1:RAF1	1
EGFR	SEL1L:EGFR	1		EML4:RET	1
	FGFR2:ALS2CR12	1	RET	ERC1:RET	1
	FGFR2:BICC1	2		NCOA4:RET	1
ГСГР	FGFR2:SORBS1	1	ROS1	SLC4A4:ROS1	1
FGFR	FGFR2:TPM4	1	RSPO3	PTPRK:RSPO3	1
	FGFR2:ZMYM4	1			
	FGFR3:ADD1	1			